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EXECUTIVE SUMMARY 
 
     Mathematical bearing capacity models proposed and developed by Hopkins in 1986 and 1991 and 
Slepak and Hopkins in 1993 and 1995 were extended to analyzing flexible pavements reinforced 
with tensile elements. The models were initially developed for analyzing the stability of reinforced 
earthen walls and slopes.  Those advanced models, which are based on limit equilibrium concepts 
and operate together in the computer software, can be used to analyze the bearing capacity, or 
stability, wheel loads resting on a single layer of pavement subgrade, two-layered problems involving 
a layer of base aggregate and subgrade, and a flexible asphalt pavement involving multiple layers of 
different materials.  In bearing capacity problems, a Prandtl-type shear surface is used in the model 
analyses of layered foundations.  Derivations of equations of the Hopkins and Slepak-Hopkins 
models are presented.  Other limit equilibrium models are reviewed and discussed. The approach 
developed by Slepak and Hopkins (1993, 1995a,b), referred to as the Perturbation Method, is 
recommended when reinforcement is used.  Either the Perturbation Method, or the Hopkins method, 
may be used in stability problems that do not involve reinforcement, or tensile elements.  The 
Perturbation Method can be used to analyze all classes of stability problems involving circular or 
noncircular shear surfaces.  Both effective and total stress analyses may be performed.  Effective 
stress analyses may be performed in the stability analyses of flexible pavements if pore water 
pressures are known (or estimated) using the Perturbation Method.     
     Although the current model does not account for strain compatibility, the strength of the tensile 
elements may be input for assumed strain levels. Pullout resistance forces are computed for both 
active and passive zones.  Those forces are compared to the strength entered by the user and the 
smaller value is used in the analyses.  Any number of tensile elements may be analyzed in a given 
problem.  In the limit equilibrium approach, shear strengths, the angle of internal friction, N, and 
cohesion, c, are entered for each layer of material.  Triaxial testing of asphalt materials is performed 
in such a manner that the shear strength parameters, N and c, are developed as a function of 
temperature.  Hence, if the temperature of the asphalt layer is known (or assumed) at a site, then 
values of N, and, c, may be calculated from the relationships between the shear strength parameters 
and temperature.  
      Moreover, to facilitate and provide an efficient means of analyzing early construction cases and 
flexible pavements reinforced with geosynthetics, “Windows” software was developed.  The report 
includes a “user’s guide” for operating the computer software.  The limit equilibrium equations 
developed by the authors were originally coded in the Fortran language and data entry was difficult.  
However, to avoid recoding the Fortran software programs and to facilitate the use of the author’s 
limit equilibrium models, PowerBuilder 8.0 was used to developed Graphical User Interface screens 
for the Windows program and data entry.  The software was structured so that the old Fortran 
programs did not have to be recoded.  The reliability of results from the old Fortran programs was 
enhanced since extensive “debugging” was not required.  Moreover, results obtained from the older 
programs had been compared to results from many published stability examples on numerous 
occasions.    
     To establish the validity and reasonableness of results obtained form the author’s limit 
equilibrium models, bearing capacity factors were derived from the author’s programmed models and 
compared to classical bearing capacity factors, Nc and Nq, developed by Prandtl and Reissner in 
1921.  Differences in the bearing capacity factors from the author’s Perturbation Method and those 
by  and Reissner were only 1 to 10 and 1 to 3 percent, respectively.  The Slepak-Hopkins 
Perturbation Model yielded values of N( that are 12 to 38 percent larger than values published by 
Caquot and Kerisel.  However, values of N( from the Slepak-Hopkins model are only 3 to 11 percent 
larger than back-calculated values obtained by Debeer and Ladanyi from experimental footing tests.  
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The minimum shear strength (and CBR-value) of a soil subgrade needed to construct a flexible 
pavement was established from the Perturbation Model.  The minimum CBR-value of the soil 
subgrade should be about 8 to 10 to safety construct a flexible pavement on a soil subgrade.  
Published field results of CBR verified results obtained from the theoretical model; essentially 
identical results were obtained.  When should mechanical, such as reinforcing geogrids, or chemical 
stabilization be used?  The model analyses showed that subgrade stabilization should be considered 
when the CBR (soaked) value of the subgrade is less than about 6 or 7.  Those theoretical analyses 
were based on the assumption that the dual-wheel, contact stresses are 80 lbs/ft2.  The findings of this 
study and past studies by the author have been incorporated into recent pavement design standards of 
the Kentucky Transportation Cabinet.         
     The Slepak-Hopkins model was also used to analyze 237 flexible pavement sections of the 1959-
1960 AASHO Road Test.  Factors of safety from the model analyses showed that very reasonable 
results were obtained and were in line with failures recorded at the test site.  Factors of safety of 
pavement sections that survived the AASHO Road Test two-year testing program (for ESALS ≥ 8 
million equivalent single axle loads) generally exceeded 1.5.       
     Finally, actual analyses of a stretch of roadway where failures occurred were analyzed.  Three 
sites of six test sites involved tensile elements.  At three locations where tensile elements were used, 
and assuming tensile element mobilized strains of 2 percent, 5 percent, and ultimate strain, the factor 
of safety increased some 2-5 percent, 2–5 percent, and 6 to 12 percent, respectively, as shown by the 
Perturbation analyses.  Geo-tensile elements with larger strengths than those used at those sites could 
produce larger factors of safety.                
     To advance the use and implementation of the limit equilibrium bearing capacity models 
described herein, the following recommendations were proposed: 
 

•    The Slepak-Hopkins Model, referred to as the Perturbation Method, proposed herein is 
recommended for general use in all classes of stability problems.  In particular, the 
method is suitable for analyzing bearing capacity problems involving early pavement 
construction situations involving base aggregates reinforced with tensile elements.  The 
approach, however, is suitable for analyzing completed flexible pavements reinforced 
with tensile elements.  The method is also suitable for analyzing those situations where 
tensile elements are not used. 

 
•    To further validate and calibrate the model, additional field research studies need to be 

made that involve flexible pavements reinforced with tensile elements.  Additional 
flexible pavement sites, however, where obvious pavement failures have occurred, need 
to be analyzed that do not involve tensile elements.  In cases involving failures, the 
Perturbation Model should yield low values of factors of safety.  The examples described 
herein appear to indicate that low factors of safety were obtained in areas where the 
flexible pavement showed distress.   

 
•    As deformation occurs under wheel loadings—bearing capacity problems--the strains of 

pavement layers and the strains of geofabrics are not necessarily the same, that is, there is 
incompatibility of strains.  To mobilize the strength of the geofabric, sufficient strains 
must occur in the geofabric—and the pavement layers.  Although the forces should be 
derived from the principle of strain compatibility, in this study, a simple assumption with 
respect to reinforcement forces was made, that is, the external forces of the geofabric act 
horizontal.  Development of a strain compatibility model was much beyond the scope of 
this study and a new research proposal should be considered in the future to develop a 
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model.  The assumption made in the Perturbation Model still allows the user to determine 
the factor of safety against failure if it assumed that a certain percentage of strain is 
mobilized in the tensile element.     

      
•    To fully implement the Perturbation computer software, it is recommended that a one- or 

two-day workshop be developed and taught to interested parties.  The workshop should 
be geared toward teaching and explaining, in detail, the necessary parameters for 
performing bearing capacity analysis of reinforced flexible pavement.  This workshop 
would be developed for practicing geotechnical engineers.     

 
•    For practicing engineers who are not totally versed in geotechnical engineering and are 

mainly interested in performing bearing capacity analyses of early construction and 
completed flexible pavements cases involving tensile element forces, it is recommended 
that simplified data entry screens be devised.  In this case, the workshop could be 
shortened to one half-or one-day.  The shortened version would basically be a “hands on” 
course for the user and include numerous examples. 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 



INTRODUCTION 
 
Problem Statement 
 
Research by the University of Kentucky Transportation Center (Geotechnology Section) in the 
eighties and nineties helped establish a major subgrade stabilization program for the Kentucky 
Transportation Cabinet (Hopkins 1987; Hopkins et al, 1988; Hopkins and Hunsuckle, 1990; Hopkins 
and Allen, 1986a; Hopkins and Beckham 1995;). Techniques that evolved from the past research 
make use of chemical admixtures, such as hydrated lime and cement, to strengthen highway soil 
subgrades.  As past research has shown (Hopkins, 1991; Hopkins and Beckham, 1995; Hopkins, et 
al, 1994a,b, c, d) soils generally used to construct highway pavement subgrades in Kentucky have 
large clay fractions and are usually very weak.  Clay soils have a large affinity for moisture and they 
soften and become weak after water absorption.  Although chemical stabilization has proven highly 
successful in increasing the strength of the natural soils some twenty to fifty times, and is used 
widely in the state, situations arise where those approaches cannot be used.  For example, chemical 
stabilization cannot be used when the temperature is below 400F and in cases where traffic must be 
routed immediately onto the unfinished 
roadway.  This particular problem is 
frequently encountered in urban areas, or 
high traffic areas. A curing period required 
in chemical stabilization is not available in 
these situations.  
     Hence, other techniques and alternatives 
must be considered and used to improve 
overall bearing capacity of the roadway 
during and after construction.  As one 
alternative, and a method used by the 
Kentucky Transportation Cabinet (KyTC), 
an aggregate layer is placed on the soil 
subgrade, as illustrated by Case 1 in Figure 
1.  In this case, traffic can be routed onto 
the roadway immediately after the 
aggregate layer has been placed.  However, 
when granular layers are placed on weak clayey subgrades that may soften and deflect under wheel 
stresses, tensile stresses may develop at the bottom of the granular layer and cause deep rutting and, 
eventually, pavement cracking (Hopkins and Sharpe, 1985; Hopkins and Beckham, 2000).  To 
lessen, or prevent, rutting of the aggregate layer, or base, during construction and flexible pavement 
cracking due to base deflection after construction, geosynthetics may be placed at, or near, the 
bottom of the granular base (Case 2 in Figure 1), or on top of the finished subgrade.  Additionally, by 
reinforcing the aggregate base with a geosynthetic fabric, the amount, )t (= two- tw), of granular 
material required to yield the same pavement performance of a thicker aggregate base (without 
geosynthetic fabric) may be reduced.  
     According to some engineers in KyTC, the use of manufacturers’ guidelines for designing an 
aggregate base reinforced with geosynthetics has yielded mixed results.  This design problem has 
been identified as a problem that needs a full examination to determine the best design approach to 
this problem.  Consequently, a need exists to develop a theoretical approach that can analyze the 
bearing capacity under traffic wheel stresses of base layers reinforced with geofabrics during 
construction.  A design approach is needed to determine the required thickness of base aggregate 

two

Weak 
Soil

Aggregate

Tires

Weak 
Soil

Aggregate

Tires

tw

∆t = two - tw

Geofabric

CASE 1
Without  
Reinforcement

CASE 2
With  
Reinforcement

 
Figure 1.  Mechanical stabilization of subgrade
using aggregate without and with geosynthetic
reinforcement.
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when it is reinforced with geofabrics.  The designer needs guidelines and a design procedure (s) to 
select the required thickness of aggregate and the appropriate strength of geotextile for a given 
subgrade strength to prevent failure, or rutting, under traffic stresses.  A design method and 
guidelines are needed to identify those situations where an aggregate reinforced base is needed.  
Also, the approach should allow a determination of how much the thickness of the aggregate base 
may be reduced when a geotextile is used.  This reduced thickness is not a constant value; it varies 
with the strength of the soil subgrade and the strength of fabric.    
 
Objectives and Scope 
 
The primary objective of this study was to develop and implement mathematical bearing capacity 
models originally proposed by Hopkins (1986, 1991) and Slepak and Hopkins (1993; 1995a, b) and 
as visualized in Figure 2.  Those models, 
which are based on limit equilibrium, can 
be used to analyze the bearing capacity, 
or stability, of the problem illustrated in 
Figure 2.  They can be used to design the 
thickness of reinforced aggregate base 
required to avoid failure during and after 
construction.  Other design procedures 
will be examined.  The theoretical 
models developed by Hopkins and 
Slepak will be used to evaluate design 
procedures published by others.   To 
facilitate and provide an efficient means 
of analyzing early construction cases and 
flexible pavements reinforced with 
geosynthetics, “Windows” software was developed.  The methods have been stored in the Kentucky 
Geotechnical Database (Hopkins et al, 2004) so that the methods are in a client/server environment 
and are readily accessible to engineers and officials of the Kentucky Transportation Cabinet.  A 
“stand along” version of the software was also written. 
 

 
BACKGROUND AND LIMIT EQUILIBRIUM METHODS FOR 

STABILITY OF EARTH STRUCTURES 
 
General Definitions 
 
Limit equilibrium approaches used to construct the bearing capacity model(s) have been described in 
full detail by Hopkins (1986, 1991) and Slepak and Hopkins (1993, 1995a,b) and the following 
discussion is basically a repeat of essentially elements of those works.     
    A mass of soil is considered to be in elasto-plastic equilibrium if the following conditions are 
satisfied within and at the boundary of a mass under consideration: 
 

•   stress equilibrium equations, 
•   stress-strain elasto-plastic constitutive relationships, 
•   compatibility equations relating strains and displacements, and appropriate boundary                  

             conditions, and  

Weak 
Soil

Aggregate

Soil Subgrade Geotextile

Tires

Potential Shear Surface

Figure 2.  Configuration of bearing capacity model 
for analyzing highway aggregate bases reinforced
with geofabrics.
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•   appropriate boundary conditions. 
 
Usual formulation of stress-strain elasto-plastic constitutive relationships involves a yield surface (f) 
and a flow rule.  Elasto-plasic material is usually considered perfectly plastic for bearing capacity 
and stability problems.  For a perfectly plastic material, f depends on the stress tensor, Fij.  Plastic 
flow can occur only when the yield condition is satisfied, or  
 

( ) 0.ijf σ =  (1) 
 
Stress states for which f (Fij)>0 are excluded, and f(Fij)<0 corresponds to elastic behavior.  In soil 
mechanics, yield function Fij is usually assumed in the form:  
 

( ) ' ' tan , 'ijf cσ τ σ φ= − −  (2) 
  
first suggested by Coulomb (1773). 
     In Equation 2, it is assumed that plastic flow occurs when, on any plane, the stress J, reaches an 
amount that depends linearly upon cohesion, c,’ and the effective normal stress 
 

' uσ σ= −   (3) 
      
where F is the total normal stress and u is a pore pressure. 
     The angle, N,’ in Equation 2 is known as the angle of internal friction of a soil.  Bearing capacity 
and stability problems can be formulated as the problems of finding collapse conditions.  These 
collapse conditions correspond to the stage when the yielding of soil governed by the Coulomb 
criterion: 
 

' ' tan 'cτ σ φ= +  (4) 
 

has spread to such an extent that the remaining elastic soil plays a relatively insignificant role in 
sustaining the load.  This condition has been termed (Chen, 1975) uncontained or unrestricted plastic 
flow.  This collapse condition can be used as a realistic basis for design. 
     Limit equilibrium methods have traditionally been used to obtain approximate solutions for the 
stability problems in soil mechanics.  These methods can probably best be described as (Chen, 1975) 
approximate methods to the construction of a slip line field and generally entail an assumed failure 
surface of various simple shapes.  With this assumption, each of the stability problems is reduced to 
one of finding the most dangerous position for the failure or slip surface of the shape chosen.  
According to limit equilibrium methods, a mass of soil (Figure 3) is considered to be in a state of   
limit equilibrium if Coulomb’s failure condition (Equation 4) is satisfied along a potential slip 
surface, y (x) and if equilibrium equations are satisfied for the mass bounded by the slope surface 
Y(x), and the slip surface y(x).  It is worth mentioning here (Chen, 1975) that none of the equations 
of solid mechanics mentioned is explicitly satisfied everywhere inside or outside the failure surface.  
The method gives no consideration to soil kinematics and does not satisfy Coulomb’s failure 
criterion (Equation 4) everywhere inside or outside the failure surface.  A solution obtained using the 
limit equilibrium method is not necessarily an upper bound or a lower bound.  However, usage of the 
method quite often gives acceptable results. 
     As previously defined, and in general, a soil mass of given properties and geometry that is acted 
upon by a given set of loads is not in a state of limit equilibrium.  To quantify the margin of safety 
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relative to a state of imminent failure, the soil’s real strength parameters, c’ and N,’ may be replaced 
by artificial ones, cf and Nf, for which a state of limiting equilibrium may be realized.  There are many 
possible ways c’ and N’ may be related to cf and Nf, and still realize a state of limiting equilibrium.  It 
is customary, however (Baker and Garber, 1978), to adjust the real strength parameters by a single 
factor, F, in the following manner: 
 

'

'tantan .

f

f

cc
F

F
φφ

=

=
  (5) 

 
Proposed Theoretical Approaches 
 
None of the equations of solid mechanics is explicitly satisfied everywhere inside or outside the 
failure surface.  As an alternative to equilibrium equations of solid mechanics, the limit equilibrium 
method considers either equations of equilibrium for vertical slices, shown in Figure 3, or overall 
equilibrium equations bounded by the slope surface and the shear surface.  Consequently, two 
equivalent formulations of a stability problem may be formulated.  
     Bearing capacity models developed by Hopkins (1986; 1991) and Slepak and Hopkins (1993; 
1995a, b), which are based on limit equilibrium concepts, were used to evaluate the stability of 
aggregate bases reinforced with geosynthetics.  The approach was used to determine the amount of 
thickness that a granular base 
can be reduced when geotextile 
reinforcement is used.   The 
bearing capacity model used to 
analyze the fabric-reinforced 
aggregate base, under wheel 
contact stresses, calculates the 
factor of safety against failure.  
The concept of using limiting 
equilibrium methods in bearing 
capacity analysis of partially 
completed and completed 
flexible pavements has been 
demonstrated in reports and 
papers published previously by 
UKTC geotechnical engineers. 
The original model (method of 
slices) developed by Hopkins (1986,1991) is especially useful for analyzing the bearing capacity of 
early construction stages of flexible pavements and low volume roads.  However, the model, which is 
based on the method of slices, has been formulated in such a manner that the bearing capacity of a 
flexible pavement containing any number of layers can be analyzed.  Ultimate strengths of the 
materials in each pavement layer are used.  Algorithms were developed to simulate any given 
uniform contact tire stress.  Shear strengths, N and c, the angle of internal friction and cohesion, 
respectively are used to describe each layer of the flexible pavement, base, and soil subgrade.  
Strength parameters used in the problems analyzed below were assumed and based on triaxial test 
results previously obtained. 

Qy Qy

Failure Mass

Failure Surface
y= y(x)

xa =  x1

Tires

Slice i

Y= y(x)

)x

Qy Qy

Failure Mass

Failure Surface
y= y(x)

xa =  x1

Tires
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Y= y(x)

)x

1n bV V= =

n bH H=
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1n bH H+ =

Qy Qy

Failure Mass

Failure Surface
y= y(x)

xa =  x1
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Slice i

Y= y(x)

)x

Qy Qy

Failure Mass

Failure Surface
y= y(x)

xa =  x1

Tires
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)x

1n bV V= =
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Figure 3. Failure surface and division of failure mass into
slices in limit equilibrium analysis. 
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     The idea of using limit equilibrium methods was extended to the case of a bearing capacity 
analysis of unreinforced flexible pavements.  Later, the proposed method for analyzing the bearing 
capacity of unreinforced pavements was extended to the case of reinforced analysis. The approach is 
based on a perturbation method (Slepak and Hopkins, 1993; 1995a, b) and the formulation of the 
equations is based on consideration of the overall equilibrium of the mass bounded by the slope 
surface and the shear surface.  The initial approximation of normal stresses acting along the failure 
surface is estimated from the Hopkins’ Approach (1986, 1991).  The final distribution of normal 
stresses is sought as a function of the initial approximation of normal stresses, reinforced forces, and 
two unknown parameters. Substituting this function into equations of equilibrium of a failure mass 
produces a system of three nonlinear equations with respect to the unknown parameters and a safety 
factor. The perturbation method has been used in a number of cases of bearing capacity and stability 
analysis of embankments reinforced with geosynthetics.  In all cases, the proposed method showed 
rapid convergence and yielded reasonable factors of safety; the solution required only a few 
iterations (typically two - three) to converge. It is important to note that the proposed method is 
statically consistent since it satisfies the three equations of equilibrium.  Raulin et al (1974) described 
the original perturbation method.  In 1993, Slepak and Hopkins added additional theory to the 
approach so that a wider variety of problems could be solved than those that could be solved by 
Raulin’s original method.  The two approaches are described below.  
  
 

HOPKINS LIMIT EQUILIBRIUM MODEL 
 
The pavement bearing capacity model developed in previous research and used to calculate the factor 
of safety against failure is a generalized limit equilibrium procedure of slices. The pavement 
mathematical model is an adaptation of a slope stability model developed by Hopkins in 1986. The 
mathematical model has been formulated in such a manner that the factor of safety of a multi-layered 
flexible pavement system may be calculated. The factor of safety may be calculated of a pavement 
system containing as many as 25 (arbitrarily selected) different layers.  In the procedure, the potential 
failure mass is divided into a series of vertical slices; the equilibrium of each slice and the 
equilibrium of the entire mass is considered.  In the approach, the ultimate strengths of the materials 
in each pavement layer are used.  Algorithms were developed to simulate any given contact tire 
stress.  The theoretical equations presented herein were written in the FORTRAN language.  
Development of the pavement bearing capacity mathematical model is presented as follows. 
 
Statical indeterminacy 
 
Determining the stability of a potentially unstable mass based on a limit equilibrium approach is 
indeterminate as shown in Table 1. There are more unknown quantities than known quantities. To 
make the pavement stability problem determinate, certain assumptions must be made.  Known 
quantities and assumptions required to achieve statical equilibrium of the pavement bearing capacity 
model are summarized in Table 2.  The location of the line passing through the points of action of the 
interslice forces, or the line of thrust (Bishop 1955; Janbu1954) is assumed. This assumption is 
unique.  In other limit equilibrium procedures of slices, such as those by Morgenstern and Price 
(1965), Spencer (1967), Spencer (1973), and Hardin (1984), the locations of the points of action of 
the interslice forces are computed as part of the solution.  Although variation of the interslice points 
of location on the sides of slices causes changes in computed values of the factor of safety, the slight 
variations do not appear to affect the reasonableness of solutions obtained from the model analyses. 
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Table 1.  Unknowns and equations for n slices. 

Unknowns Associated With force Equilibrium 
1 
 

Factor of safety  

n Normal Forces (Ni ) on the base of each 
slice 

 

n-1 Normal Forces (Ei) on each interface 
between slices  

Resultant Forces (Zi) of Ei and (or) Ti on 
each interface between slices  

n-1 Shear forces (Ti) on each interface between 
slices 

Angles –which express the relationships 
between Ei and T on each interface 
between slices  

Unknowns Associated With Moment Equilibrium 
n Coordinates bi locating the normal forces on the base of each slice  
n-1 Coordinates ai locating the normal forces Ei on each interface between 

slides 
 

-------------------------------------------------------------------------------------------------------------------- 
2n-1  Unknowns versus n equations 
 
 
Totals Unknowns 
5n-2  Unknowns versus 3n equations  

Table 2.  Janbu’s Approach (1954) –unknowns and equations for n slices. 

Unknowns Associated With Force Equilibrium 
1 Factor of safety  
n Normal Forces (Ni ) on the base of each slice 
n-1 Normal Forces (Ei) on each interface between slices  
Assume 
(initially) 
Ti = 0 

Shear forces (Ti) on each interface between slices 

--------------------------------------------------------------------------------------------------------------------
- 
2n 
 

Unknowns versus 2n Equations 

Unknowns Associated With Moment Equilibrium 
n Coordinates bi locating the normal forces on the base of each slice 
Assume Coordinates ai locating the normal forces Ei on each interface between slides 
--------------------------------------------------------------------------------------------------------------------
-- 
n                 Unknowns versus n equations 
 
Total Unknowns  
3n               Unknowns versus 3n equations  
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Basic Assumptions 
 
Fundamental assumptions made in the formulation of the pavement bearing capacity model are as 
follows:   
 

•    A line, or thrust line (Bishop 1955) passing the points of action of the interslice forces is        
known or assumed.    

•   The materials forming the layers of the pavement of the potentially unstable mass conform 
to the Terzaghi-Coulomb shear strength formula (Terzaghi 1943). 

• For each pavement cross section, the stability problem is treated as two dimensional (plain      
 strain). The shear strength of the materials in the pavement layers may be expressed in 

terms of effective stress or total stress (Terzaghi 1943). 
• For each pavement cross-section, the stability problem is treated as two-dimensional 

(plain strain).  
• The factor of safety of the cohesive component of strength and the frictional component 

are equal. 
•   The factor of safety is the same for all slices. It is expressed as the ratio of the total shear            

strength available on the shear surface to the total shear strength mobilized to maintain 
statical equilibrium (Bishop 1954). This assumption implies there is mutual support 
between adjacent slices.  It implies the existence of interslice forces. 

•   Since vehicles are normally in motion, the assumption is made that contact tire stresses are 
in motion and that the imposed contact stresses act similar to an infinitely long strip 
loading. While this assumption may not be strictly correct, the assumption is considered to 
be conservative in nature since end effects of the loaded area are not included.  Forces due 
to acceleration, a, or deceleration are not considered in this study (a = o). 

  
 

Theoretical equations 
 
A cross section of a pavement subgrade showing the external loading of wheel loads and the 
potential failure mass and bearing capacity shear surface is shown in Figure 3.  The potential failure 
mass located between the potential failure surface and grade elevation is divided into slices by 
vertical lines.  The forces acting on the four boundaries of an individual slice are shown in Figure 4. 
The sign convention used in formulating equations is shown in the upper right portion of that figure.  
 
 
Geometry 
The method used to describe the geometry of a pavement section and the arrangements of different 
types of layers is illustrated in Figure 5. The computer program can only solve two-dimensional 
problems.   Geometry of the section is defined by x- and y- coordinates and line segments. The x- 
coordinate direction must be horizontal and increases positively from left to right. The y- coordinate 
direction is vertical and must increase positively from bottom to top. The origin of the coordinate 
system is located to the left and below the section.  
     Straight-line segments approximate the entire cross section. This applies to the ground line 
surface, layer boundary interfaces, water table surface, or piezometric lines, shear surface, and thrust 
line (Bishop 1954). The uppermost line segments are identified in the computer solution as the 
ground line surface (grade elevation).  In the example shown in Figure 5, the ground line is defined 
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T Hopkins, L Sun, and M Slepak--- University of Kentucky Transportation Center, College of Engineering 
 

 

9

 

by x- and y- coordinates of points a, b, and c.  Layer number 1 lies between the line segments of the 
ground line surface and line segments of boundary interface number 1. Boundary interface number 1 
is described by x- and y- coordinates of Points d and e. Layer number 2 lies between boundary 
interface number 1 (Points d and e) and boundary interface number 2. This interface is described by 
x- and y- coordinates of Points f and g in the example.  Layer number 3 lies between boundary 
interface number 2 and boundary interface number 3.  Interface number 3 is described by x- and -
coordinates of Points h and i. For additional layers of material, this pattern is repeated. In the present 
version of the computer model (HOPKIB, version 1.0), a maximum of 25 (arbitrarily selected) layers 
of material may be specified.  
     Additionally, the ground surface and all boundary interfaces must be horizontal -- this condition 
does not seriously affect the solution since most pavement layers are essentially horizontal 
(subsequent versions of the computer model will remove this condition).   
     As shown in Figure 5, the water table is defined by x- and y- coordinates of Points m and n. 
Alternatively, the pore pressures in any given layer of material may be defined by x- and y- 
piezometric coordinates (identified as Points o, t, u, v, y, z and s in Figure 5).  As another option, 
pore pressures may be defined for each layer of material using a pore pressure ratio (Daehn and Hilt 
1951), 
 

u
v

ur
σ

= .  (6) 

 
 
This parameter (a dimensionless parameter) is the ratio of the pore pressure, u, to the vertical stress, 
σv, above the element under consideration.  In the computer solution, pore pressures in one layer may 
be defined by piezometric coordinates while in another layer they may be defined by specifying a 
value of ru. Line segments of the water table, piezometric coordinates, thrust line, or shear surface 
need not be horizontal. A maximum of twenty-five coordinates may be used to describe a given 
piezometric level or water table. A set of piezometric lines may be used to define the pore pressures 
for each layer of material. Piezometric lines and pore pressure ratios may be intermixed. 
     A summary and definitions of the forces acting on an individual slice (Figure 4) are as follows: 
 

   dx = finite width of slice i 
   Py = external vertical point load acting on the surface of slice i 
   Px = horizontal external point load acting at the surface of slice i 
   dQx = horizontal force acting at the surface or in the interior of the soil mass (earthquake    
                   force) 
   dQy = vertical force acting at the surface or in the interior of the soil mass (in the analysis     
                   performed herein,  
   dQ y         = qdx) is assumed to be the force acting on a single tire). 
   dWγ = denotes the weight of the slice 
   dN = normal force acting perpendicular to the base of slice i (see Figure 4 and 6) 
   dNy = normal force component acting vertically at the base of slice i 
   dNx = normal force component acting horizontal at the base of slice i 
   dS = shear force acting along the base of slice i (see Figures 4 and 6) 
   dSy = component of the shear force acting vertically at the base of slice i 
   dSx = component of the shear force acting horizontally at the base of slice i 
   H = resultant of the total horizontal interslice force 
   V = resultant of the total vertical interslice force 
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   dl = length of slice i along its base 
   Sc = seismic coefficient 
   Tanα  = slope of line of thrust 
    tan θ   =  slope of shear surface 
   (yt-ys)  =  vertical distance between shear surface and line of thrust 
   dy =  vertical distance between the shear surface at the left side of slice i and the shear           
                   surface at the right side of slice i 
   (yQ-ys) = distance that dQx acts above the assumed shear surface 
   (yg-ys) = distance that Px acts above the assumed shear surface (also, the vertical distance     
                  between ground surface and shear surface at the side of slice i) 
   σ        =   normal stress acting perpendicular to the base of slice i 
   τ   =    shear stress acting along the shear surface 
   F   =   average factor of safety 
   C   =   tensile element resultant force acting at the base of slice i (see Figure 8). 
   Cx   =   tensile element component force acting horizontal at the base of slice i 
   Cy  =   tensile element component force acting vertical at the base of slice i. 

 
         
Projections of the forces, dN and dS, when θ is greater than zero and when θ is less than zero are 
shown in Figure 6.  The tensile element force, C, acting at the base of slice i and projections of this 
force, Cx and Cy, are considered in Figure 7. The directions of the force C when θ is greater than zero 
and when θ is less than zero are shown in Figure 7. When θ is less than zero, the force C acts at some 
angle, η (as shown in the left portion of Figure 7) where η is assumed to be some value between 180 
+ θ and 180 degrees. When θ is greater than zero, the force C is assumed to act at angle, η, that lies 

2 < 0

sinxdN dN θ= −
cosydN dN θ= −

sinydS dS θ=
cosxdS dS θ=

ydN
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H
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y

Figure 6.  Projections of the forces dN and dS when 2> 0 and 2<0.    
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between 180 + θ degrees and 270 degrees, as shown in the right portion of Figure 8 (equations have 
been derived that relate the direction -- or angle η -- of force C in terms of the angle θ and the failure 
strain, Ef, or a selected value of E, of the tensile element that intersects the base of slice i).   Although 
the derivations given below consider the force C, the HOPKIB bearing capacity computer model 
does not include these algorithms. 
 
Derivations 
The equation of equilibrium in the horizontal direction (see Figure 4) is: 
 

� HORIZONTAL FORCES = 0: 
 

 
( ) 0x x x x xH H dH dN dS dQ P C− + + + + + + =  (7) 

 
 

xx x xx= dH - - - -dQdN dS CP   (8) 
 
Equilibrium in the vertical direction is: 
          
   Σ VERTICAL FORCES = 0: 

 
 

y y y yy + +dW -V +(V +dV)+ + + = 0dQ dS dN CP  (9)
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Cy
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Figure 7.  Projections of tensile element forces acting at the base of slice i when 2> 0 and 2 
<0. 
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Solving for dN: 
 

yy y yy= - - - dW - dV - -dQdN dS CP   (10) 
  

     Equation 9 may be used to develop an expression for the normal stress, F, which acts 
perpendicular to the base of slice i.  Since 
 
 

cosy = -dNdN θ  , and   (11) 
 

siny = dSdS θ , then   (12) 
  

cos sin sinyy-dN = - - - dW - dV - dS +CdQ Pθ θ η  (13) 
 

sin sec tanyydN = [ + +dW +dV - C ] +dSdQ P η θ θ  (14) 
 

 
 
(See Figure 8) then: 
  

secdN = dl = dxσ σ θ , and   (15) 
secdS = dl = dxτ τ θ , then  (16) 

dl

dx

2
dl

dx

2

cosdx dl θ=
secdl dl θ=

 

Figure 8.  Relationship between dx and dl. 
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sec sin sec sec tanyydx = [  +  + dW + dV - C ] + dxdQ Pσ θ η θ τ θ θ  (17) 
  

 
Solving for F:  
 

 
sin sec sec tan

sec sec
yy[ + +dW +dV - C ]dQ P dx= +

dx dx
η θ τ θ θσ

θ θ
 (18) 

  
sin tany ydQ dW dV CP= + + + - +

dx dx dx dx dx
ησ τ θ

 
 
 

 (19) 

 
By definition, the equation defining limit equilibrium and the mobilized shear stress, J is: 

 
tanc ( - u)= +

F F
σ φτ ′ ′

  (20) 

 
Introducing Equation 19 into Equation 20, an expression for J is:  

 
sin tantany ydQc dW dV CP= + + + + - + - u

F dx dx dx dx dx F
η φτ τ θ

  ′ ′
     

 (21) 

 
Let 
 

siny ydQ dW dV CPM = + + + -
dx dx dx dx dx

η 
 
 

  (22) 

  
then 

 
tan tan tan tanc M= + - u +

F F F F
φ φ τ θ φτ

′ ′ ′ ′
  (23) 

  
 

[ ] tantanc= + (M + )- u
F F

φτ τ θ
′ ′

  (24) 

  
tan tan tan tanc M- = + - u

F F F F
τ θ φ φ φτ

′ ′ ′ ′
  (25) 

 
Equations 8 and 10 may be used to obtain an expression for the differential horizontal force, dH, by 
eliminating dN.  By making the substitution, 

 
sinx = -dNdN θ   (26) 
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tan tan tan tanc M1- = + - u

F F F F
θ φ φ φτ

′ ′ ′ ′ 
 
 

  (27) 

 
sin' tan '

tan tan '1

y y

f

dQ dW dV CPc + + + - u
dx dx dx dx dx

=

F

η φ
τ

θ φ

  
+ −     

 − 
 

                                                 (28) 

Equation 10 becomes: 
 
 

sin xx x xx= -dN = dH - - - -dQdN dS CPθ   (29) 
  

xx xxdN = (-dH + + + + )cscdQdS CP θ   (30) 
  

 
Making the substitution: 
 

cosy = -dNdN θ ,  (31) 
  

 
Equation 10 becomes: 

 
cos yy y yy= -dN = - - - dW - dV - -dQdN dS CPθ  (32) 

  
secy y yydN = ( + +dW +dV + + )dQ dS CP θ  (33) 

  
 
Setting Equation 30 equal to equation 33, an expression for the differential interslice horizontal 
forces may be developed as follows: 

 
 

secx yx x y yx y(-dH + + + + )csc = ( + +dW +dV + + )dQ dQdS C dS CP Pθ θ  (34) 
  

tanx yx x yyx y(-dH + + + + )= ( + +dW +dV +dS + )dQ dQdS C CP P θ  (35) 
  

tan tanx yx y x yx y-dH = - + - - - +( + +dW +dV + )dQ dQdS dS C CP Pθ θ  (36) 
 

tanx yx x yyx y-dH = (- - - - )+( + +dW +dV +dS + )dQ dQdS C CP P θ  (37) 
 

cos sin tan tanx yx yx y-dH = dS +dS - - - +( + +dW +dV + )dQ dQC CP Pθ θ θ θ  (38) 
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sec cos sec sin tan tan-dH = dx( + ) - - P - + ( + + dW + dV + )dQ dQC CP yx yxx yτ θ θ θ θ θ θ
 (39) 

sec cos sec sin tan tan-dH = dx + dx - - - + ( + + dW + dV + )dQ dQC CP Px yx yx yτ θ θ τ θ θ θ θ
 (40) 

tantan2
x x yyx y-dH = dx(1+ )- - - +( + P +dW +dV + )dQ dQC CPτ θ θ  (41) 

tansec2-dH = dx - dQx - Px - Cx+(dQy+ Py+dW +dV +Cy)τ θ θ  (42) 
 
 
At any interface, xi, as shown in figures 3 and 4, the side force, Hi, at any distance from xi, may be 
calculated in the following manner: 
  

i

1

x
i 1 x- =   dHH H ∫ ,  (43) 

 
 
or  (introducing Equation 37 into Equation 38), 
 

seci

1

y yx 2
i 1 xxx

dQ dW dV CsinP= -  dx( )- - - Ccos + + + + - dxtandQH H P dx dx dx dX dx
ητ θ η θ

 
∫  

 
 (44) 

 
 
An expression for calculating the vertical shear force at any interface, xi, may be obtained by 
considering moment equilibrium about point a of slice i, as shown in Figure 4.   Moment equilibrium 
about the assumed point of application (point a in Figure 4) of the normal forces, dN, is:      
 
 
Σ MOMENTS = O 
 
 
 
 
 

 

t ts s

xi i g s

x
Q s y p c c fyX

f cx

dxtan dxtanH ( - )- - (H + dH) (y - )+ dxtan - +y yY 2 2
dx dx dxtan +( + dV) +  ( - ) - +y yV V P2 2 2

 dxtandQ( - )- +  ( - ) -  ( - )+dQ CY Y P X X X X2
 ( - )= OC Y Y

θ θα

θ

θ

   
      

 
    (45) 

 
 
 
Multiplying terms,  
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tan

cos sin

t s t s

i it s

x
x y p cg s x Q s

c ff c

dxtan dxtanH( -  ) - H - H ( -  )+dxtan - -y yY Y 2 2
dxtan dx dx dxdH ( - )+dxtan - +  +  +dV +y y V V2 2 2 2

 dxdQdxtan ( - ) - + ( - ) - +  ( - )+y y dQ y y x xP P2 2
C ( - )+C ( - )= Oy y x x

θ θα

θα

θθ

η η

 
  

 
  

 
  

 (46) 

 
 
rearranging terms, Equation 46 may be written as: 
 

 
tan

cos sin

t s t s

s i it

x
x y p cg s x Q s

c ff c

dxtan dxtanH( - )- H - H( - ) - Hdxtan + H -y y y y
2 2

dxtan dx dx dxdH( - )- dHdxtan +dH +  +  + dV +y V VY 2 2 2 2
dxdQdxtan( - )- + ( - )- + ( - )+y y dQ y y x xP P2 2

C ( - )+C ( - )= Oy y x x

θ θα

θα

θθ

η η

 
  

 (47) 

 
 
Neglecting second order term dQxdxtan2/2, Equation 47 becomes: 
 

 

cos sin

st

x s x yi p cg x Q s

c ff c

dxtan dx-Hdxtan - dH( - )- dHdxtan +dH + dVy Y 2 2
dxtan+  dx+ ( - ) - + ( - )+ ( - )y dQ y yV x xP Y P P2

+C ( - )+C ( - )= Oy y x x

θα α

θ

η η

 (48) 

 
  

When concentrated loads are not considered (Px = Py = Cx =Cy = 0) the values of dH and dV are of 
the same order as dx.  Here, Equation 48 can be further simplified and an expression for Vi is: 
 

 

tan x
i Qt s s

dQdH= H + ( - )- (y - )y y yV dx dx
α   (49) 

  
At any interface, xi, as sown in Figures 3 and 4, the differential vertical force dV, at any distance 
from xi, may be calculated as follows: 
 

 
1

i

X
1 iX dV = -V V∫   (50) 
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When concentrated loads are present an expression for dV can be obtained by solving the system of 
Equations 48, 42, and 28 with respect to dH and dV. 
     An expression for the average factor of safety may be developed from the equation by solving the 
equation for overall horizontal equilibrium, or   
 

n+1

1

X
n+1 1 x- = dHH H ∫   (51) 

 
Substituting the expression, Equation 42, for the differential horizontal interslice forces, Equation 51 
becomes : 

 

tantann+1

1

fx 2
1 n+1 x yx yx yx - = dx(1+ ) - - - +( + + dW + dV + )dQ dQC CH H P PF

τ θ θ∫  (52) 

 
Rearranging terms, 
 

tan

tan

n+1

1

n+1

1

y y yx
1 n+1 x xxx

x 2
fx

dQ dW dV CP- + + + - + + + + dx =dQ CH H P dx dx dx dx dx  
1  dx(1+ )
F

θ

θτ

 
∫  

 

∫

 (53) 

 
and solving for the average factor of safety, or  
 
 
 

 
tan

tan

n+1

1

n+1

1

x 2
fx

y y yx
n+1 x x1 xx

  dx(1+ )
  F =

dQ dW dV CPH - + + + - + + + + dxdQ CH P dx dx dx dx dx

θτ

θ

∫
 

∫  
 

 (54) 

  
 
 
Substituting the expression for Jf  (Equation 28), Equation 54 becomes: 
 
 

 

tan tan

tan tan

cos tan

n+1

1

n+1

1

y y y 2

x
x

y y yx
1 n+1 xxx

dQ dW dV CPc + + + + + - u dx(1+ )
dx dx dx dx dx

1 -
F    F =

dQ dW dV CP- + + + C - + + + + dxdQH H P dx dx dx dx dx

φ θ

θ φ

η θ

    ′ ′          ∫ ′ 
 
 

  
 ∫     

 (55) 
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Solution of Equations 
There are many considerations and steps involved in calculating the factor of safety from Equation 
55.  A full description and complete details of the solution are much beyond the scope of this report. 
Many details and geometric considerations have been given elsewhere (Hopkins 1985).  A brief 
summary of the steps necessary to solve Equation 55 is described below. 
     The force, dW, may be approximated as shown in Figure 9 and the expressions 
 

  
i

i 1 2 K -1 k+ +,...,+ +dWdW W dW dW dW≈ ∆ ≈  (56) 
       1 2 k -1 K1 2 K -1 K+ +,...,+ +a a a aγ γ γ γ≈   (57) 

 
   K1 2 K -1 Kg 1 1 2 K -2 K -1 K -1   dx( - )+ dx( - )+...+ dx( - )+ dx( - )y y y y y y y Yγ γ γ γ≈  (58) 

 
where yg, y1, ..., yK-2, yK-1, and yK = y- coordinates at the intersections of the center of slice i and the 
bottom of each layer of material and γ1, γ2, ..., γK-1, and γK = unit weights of Layers 1, 2, ..., K-1, K 
(K is equal to the total number of layers of the bearing media). 

Layer 1

Layer 2

Layer k-1

Layer k

b’
a

b
a’
c

d

f
e

g

dW1 1 1( )gdW dx y y= −

2 1 2( )dW dx y y= −

1 2 1( )k k kdW dx y y− − − −= −

1( )k k kdW dx y y− −= −

d’c’

( , )g gx y

1 1( , )x y

2 2( , )x ydW2

e’

( , )k kx y

2 2( , )k kx y− −
h’

2 2( , )k kx y− −

dWk-1

dWk

g’

j’
j

m
m’

n
n’p’

p

ix 1ix +

dx

 
Figure 9.  Scheme for estimating the force, dWi , for a multilayered bearing medium. 
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     The actual areas bounded by the boundary layer interfaces and the x- coordinates of the sides of 
the slices are approximated by rectangles.  For example, in Figure 9, the actual area, identified as bcd 
(Layer 1) is approximated by the rectangular area identified as a'b'd'c'.  Similarly, the actual area 
(Layer 2) identified as cdef is approximated by the rectangular area c'd'e'f'. Although this scheme 
introduces some error in calculating the actual area of a slice (and the force dWi), the error becomes 
essentially insignificant when a large number of slices are used (in solutions shown herein, the 
potential failure masses were divided into 598 slices). The derivative, dW/dx, may be approximated 
from the following expression: 
 
 

    
i idW W

dx x
∆≈
∆

                                                                                               (59) 

 
 
where  )x = xi-1 - xi. 
     The scheme for considering distributed loads due to the tire force, dQy, is illustrated in Figures 10 
and 11. The contact area of the tire resting on the pavement is assumed to be essentially a square.  It 
is assumed that the length of the contact area is infinitely long since the vehicle is normally in 
motion. The distributed stress may be computed from the relationship: 
 
 

y

c

Q
q =

a
,      (60) 

 
 
where 
    

  q  = tire contact stress, 
  ac = unit ground contact area.         
 

 
For example, in the AASHO Road Test (1962), the gross tire unit contact area for the vehicles on 
lane one, loop four, (18-Kip single-axle loads) was 67.8 pounds per square inches (For loops 3, 4, 5, 
and six of the AASHO Road Test, the unit tire contact stress was about 87 to 90 percent of the tire 
inflation pressure). The force (dQy) per tire was 4,580 pounds. The unit stress was 
 

2
u 2

4580lbs= = 67.5lb/q in67.8 in
   (61) 

  
    In the computer analyses shown herein, the stress, qu, was assumed to be uniformly distributed, as 
shown in Figure 10. While this assumption is not strictly correct, the assumption simplifies the setup 
of the equations. Uniformly distributed load (or stress) was assumed to extend the width of the tire 
and to extend 1 inch into the page (perpendicular to the section). Hence, the distributed load is 67.5 
lb/inch (inch) (note: other units may be used). The units of all data entered into the computer model 
must be consistent. The numerical value and units specified for the unit weight of water control the 
units of all other input data. For example, if the unit weight of water is specified to be 0.0361 pounds 
per cubic inch, then x- and y- coordinates must be in inches; values of the strength component, 
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cohesion, c, must be in pounds per square inch; and unit weights of layer materials must be specified 
as pounds per cubic inch. These units were used in all problems shown herein since these units are 
convenient to use when working with pavement layers and considering that thicknesses of pavement 
layers and tire inflation pressures are usually stated in units of inches and pounds per square inch, 
respectively. 
     As shown in Figure 10, the externally acting distributed loads, q, due to wheel loadings are 
entered into the computer model by specifying values of q at specified values of the x-coordinate. For 
example, the distributed load in the example in Figure 10 is described by q- and x- coordinates of 
Points a, s, t, u, v, x, y, z, b, and c. For instance, if q equals 67.5, then the following coordinates 
would be entered (the qu - x coordinates must extend the full length of the ground line surface): 
 

xa           00.0 
xs               00.0 
xt         67.5 
xu        67.5 
xv              00.0 
xx              00.0 
xy        67.5 
xz        67.5 
xb        00.0 
xc        00.0 
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Figure 10.  Method for describing distributed loads. 



T Hopkins, L Sun, and M Slepak--- University of Kentucky Transportation Center, College of Engineering 
 

 

21

 

      Internally, in the computer program, for each slice located between the end points, xi and xi+1, the 
portion of the load diagram lying immediately above slice i is divided into ten slices (an arbitrarily 
selected value), as illustrated in Figure 11, or 

 
i+1 i

si
-x x,=X 10

∆   (62) 

 
For each small slice, ∆Xsi, point loads, P∆xs, are computed from: 
 

 
xsi si= q xP∆ • ∆   (63) 

 
 
Since P∆xsi values occur on both 
sides of the center of slice i at the 
base (point a in Figure 11 there 
are moments about point Q. For a 
given slice, the moments due to 
the P∆xs forces to the left of Point 
a and moments to the right of 
Point a cancel each other, since 
the area of a given slice is 
approximated by a rectangle. At 
the ends of the load (q > o) and in 
the case where the loaded portion 
does not coincide with the x- 
coordinate, xi or xi+1, there are 
unbalanced moments. There is 
some error introduced, but may 
be made small by using a large 
number of slices (Note: by 
formulating the scheme in the 
manner described above, 
irregularly-shaped distributed 
loads, q, may be solved; however, in the present version -- HOPKIB 1.0 -- of the computer solution, 
only uniformly distributed loads may be solved since the moments due to P∆xs are not considered in 
the present version. When irregularly-shaped distributed loads are used, the unbalanced moments 
need to be considered. Future versions will rectify this situation so that irregularly shaped distributed 
loads may be considered). The derivative dQy/dx is 
 

ydQ
 = q

dx
  (64) 

 
 
The force, Qx (considered herein as an earthquake force acting at the side of each slice), may be 
approximated from the expression: 
 

0

q

ix

1ix +

Slice i

x
sx sP q x∆ = ∆

sx∆

CLCL

q
Distributed Load Diagram

Figure 11.  Scheme for treating distributed loads. 
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cx dWdQ S≈ •   (65) 
 
 
The force dQx for each slice is plotted as a function of xi for each slice. Numerical differentiation is 
used to obtain a value of dQx/dx at the side (xi - coordinate) of each slice (these calculations are 
performed internally in the computer model solution). 
     The end boundary forces, H1, Hn+1, V1, and Vn+1 are assumed to be known quantities (these 
quantities, when known or estimated, may be entered into the computer program).  In the analyses 
shown herein, these forces are assumed equal to zero. 
     The forces, Py, Px, and dQy are assumed to be known quantities. The derivative, dQy/dx, is 
approximated as follows: 
 

y ydQ Q
dx x

∆
≈

∆
  (66) 

  
The quantity, Px/dx (or Py/dx), containing concentrated load, Px (or Py), does not represent a real 
derivative. This is a generalized δ-function that makes sense only under the integral sign: 
 
 

x x

x x

y y

y y

bxb
x xxa a

yb b
y yya a

P  dx =   (X - )dx =  CP Pdx
P  dx =   (X - )dx =CP Pdx

δ

δ


∫ ∫ 


∫ ∫ 

  (67) 

 
 
where (ax, Bx) or (ay, By) is any interval containing the point Cx (or Cy) of application of the 
concentrated load Px (or Py). 
     The value of the tensile element force, C, is assumed to be known. Angle, η, must be assumed. 
This angle ranges between the angles 180 + θ (see Figure 7) and 180 degrees for θ<0, and between 
180+0 and 270 degrees for θ>0. The terms, C sinη/dx, and C cosη/dx are of the same nature as Px and 
Py, so they are estimated as follows: 
 

 
sin sinc

c

b
a

C dx = C
dx

η η∫   (68) 

  
and 
 

cos cosc

c

b
a

C dx = C
dx

η η∫   (69) 

 
 
where (ac, bc) is any interval, containing the point of application of the tensile force C. 
     (The present version of the HOPKIB computer program (version 1.0) does not contain these 
logarithms.  Future versions will consider tensile element forces.) The values of φ' and c' (or the total 
stress parameters, φ and c) must be determined for each layer of the multi-layered bearing medium. 
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     Location of the points of action (thrust line -- Bishop 1955) of the interslice forces on the sides of 
the slices is assumed. In the computer model solution, only one parameter, λ, needs to be entered.        
The parameter, λ, is defined as follows (see Figure 4): 
 

t s

g s

- yY=
- yY

λ ,  (70) 

 
 

t s g s( - )= ( - )y y y yλ   (71) 
 
 
In the solutions shown herein, a value of 0.33 was assumed for λ. 
     The quantities, tan θ and tan α, are computed from geometric considerations. The factor of safety, 
F, must be obtained by iteration since the factor of safety appears on both sides of Equation 55. The 
derivative, dv/dx, appearing in Equation 55 for each slice is unknown. The values of Vi cannot be 
defined until values of the derivative, dH/dx, and Hi are known. To obtain estimates of the 
derivatives, dV/dx and dH/dx, and the quantities Vi and Hi, the following procedure may be used.  
Let 
 
 

tan tan

tan2

1-
FN =

1+

θ φ

θ

′

  (72) 

  
 

 

sin tany ydQ dW dV C dxPdM = C + + + + - - u
dx dx dx dx dx N

η φ
   

′ ′        
 (73) 

  
 

 
sincos tany y

xx

dQ dW dv cP dL = + + C - + + + - dxdQ P dx dx dx dx dx
ηη θ

 
 
 

 (74) 

  
Equation 58 becomes: 
 

 
n+1

1

n+1

1

x
x

x
1 n+1 x

dM
F =

- + dLH H
∫

∫
  (75) 

  
 
 
Using the new variables, M and L, Equation 28 may be rewritten 
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tan
f 2

dM
dx = 

1+τ θ
,  (76) 

 
Since, by definition 
 

f=
F
ττ ,  (77) 

then Equation 42 for the differential horizontal interslice forces, dH, is 
 

dMdH = dL -
F

  (78) 

 
An expression may be developed for computing the differential horizontal interslice forces. The 
vertical interslice forces, Vi, and the derivatives, dv/dx, are unknown in Equation 78.  Iteration may 
be used to obtain a first approximation of the factor of safety, Fo. This operation is done by setting 
the derivatives, dv/dx, equal to zero.  Iteration is performed on Equation 75 by first assuming that 
values of dv/dx are equal to zero and by using an assumed value of Fo.  Iteration is completed when 
the condition, 
 

  
on+1 on| - |F F ε≤   (79) 

  
 
 
is satisfied. The parameter, ε, is a selected error. In all computations shown herein, ε is set equal to 
0.001. That is, the iteration is considered successful when the absolute difference in successive 
factors of safety is equal to or less than 0.001. Convergence of the solution to the factor of safety, Fo, 
usually occurs in three to six iterations. 
     The second stage of the computations involves the introduction of interslice forces, Hi and Vi, and 
the derivatives, dv/dx and dH/dx, into the equations and performing iteration on Equation 75. Using 
Fo, the first set of the horizontal interslice force differentials, dH, may be computed from Equation 78 
for each slice. At any interslice boundary xi, the horizontal force may be computed from the 
expression: 
 

 
i

1

x
i 1 x= + dHH H ∫ .  (80) 

  
 
 
The values of Hi are plotted as functions of the values of xi. Based on this curve, numerical 
differentiation may be used to compute the derivative, dH/dx, at a selected value of xi.  Using the 
computed derivative at a selected value of xi, the vertical interslice force, Vi, may be computed from 
Equations 48 or 49.  Values Vi are plotted as a function of xi.  Based on this relationship, the 
derivative dv/dx may be computed using numerical differentiation techniques. Using the computed 
values of dv/dx, a new factor of safety is computed -- F1. Based on F1, the process is repeated:  new 
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values of dH, dH/dX, Vi, and dV/dX are obtained.  Based on these subsequent sets of values, a new 
safety factor is obtained. The iterative scheme is continued until the condition, 
 
 

| |n+1nF   F ε− ≤ ,  (81) 
 
 
 
is satisfied.   The term, ,, is an error selected by the user.  Usually the value in this case is 0.001.  
 
Classes of Bearing Capacity Analysis 
 
Bearing capacity analyses of pavements and soil subgrades may be divided into two main classes of 
problems. In the first class, the pore pressures acting within each structural layer of pavement 
(asphalt concrete, base, subbase, and soil subgrade) are independent of the magnitude of total stresses 
acting in each layer of the pavement regime. The pore pressures are independent variables and the 
analyses are performed in terms of effective stress using the shear strength parameters, φ' and c'. The 
values of φ' and c' may be obtained from consolidated-drained triaxial tests (Bishop and Henkel 
1964) or consolidated-undrained triaxial tests with pore pressure measurements. To analyze the 
stability of pavements using the effective stress approach requires knowledge of the pore pressures 
acting within each layer of material. To conduct this type of analysis would require estimating pore 
pressures using (perhaps) methods proposed by Skempton (1954); or Ching and Fredlund (1983); 
Fredlund and Rahardjo (1985); Fredlund (1985) -- future versions will consider methods involving 
unsaturated soils. 
     In the second class of analyses, the pore pressures acting in each layer are a function of stress 
changes within each layer.  The analyses are conducted in terms of total stress using the total stress 
parameters, φu and cu. The values of φu and cu are obtained from unconsolidated-undrained triaxial 
tests. If the soil subgrade is saturated, then the total stress parameters of the soil may be obtained 
from the unconfined triaxial (ASTM) compression test -- a form of the unconsolidated-undrained 
triaxial compression test. In this case, the total stress parameter, φu, is zero and the undrained strength 
is defined as cu. 
     At the present stage in the development of the current pavement bearing capacity computer 
model, the stability analyses shown herein were performed using total stress analyses. 
Unconsolidated-undrained triaxial compression tests were performed on the asphalt concrete and 
base (and subbase) to define the total stress parameters, φu and cu.  Unconfined compression tests 
were used to define the shear strength of the soil subgrade (when these were available).  Alternately, 
a relationship developed during the course of this study between the CBR strength and the undrained 
shear strength, cu, or Su, was used to define the undrained shear strength when CBR data were 
available (although total stress analyses were used herein, the bearing capacity problem may be 
solved using the effective stress technique). Use of this method of analyses was beyond the scope of 
this study because of the complexity of determining values of pore pressures. Perhaps, in future 
research, an examination of techniques necessary to define pore pressures in each pavement layer 
could be made. For example, consolidated-undrained triaxial compression tests with pore pressure 
measurements could be performed on saturated specimens of asphalt concrete to define the effective 
stress parameters, φ' and c'. Additionally, consolidated-undrained triaxial compression tests with pore 
pressure measurements could be performed on base (and subbase materials), and the subgrade soils 
to define the effective stress parameters, φ' and c'. To perform the analysis in terms of effective 
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stress, pore pressures acting 
within each pavement layer 
and subgrade could be 
estimated or measured -- a 
complex task. 
     More sophisticated 
techniques of shear strength 
testing than used herein 
could be examined to define 
the shear strengths of the 
different pavement 
components. For example, 
consolidated-drained, or 

consolidated-undrained 
triaxial compression tests 

with pore pressure measurements could be used to estimate the effective stress parameters, φa and ca, 
for the portion of the shear surface along the active wedge. Simple shear tests, torsional tests, or 
direct shear tests could be performed to estimate the shear strength along the portion of the shear 
surface of the central wedge.  Triaxial extension tests could be performed to define the shear strength 
along the portion of the shear surface of the passive wedge. These series of tests would be performed 
on each member or layer of the pavement regime. To a certain degree, the research version of the 
HOPKIB model has been developed to consider this approach. However, full development of this 
approach is much beyond the scope of this study. 
 
Shear Surface Used in Bearing Capacity Analysis 
 
Shear surfaces of various shapes or failure patterns may be assumed in performing bearing capacity 
analysis.  For example, circular and wedge-type shear surfaces may be used.  However, basic bearing 
capacity solutions by Prandtl in 1921 and Reissner in 1924 show that the failure pattern should 
consist of three distinctive zones as shown in Figure 12.  These three zones are identified as zones 1, 
2, and 3.   Zone 1 is an active Rankine zone.  This zone pushes the radial Prandtl Zone 2 sideways 
and the passive Rankine Zone 3 in an upward direction as shown in Figure 12.  The basic Prandtl-
type failure pattern was assumed in developing the pavement bearing capacity mathematical model. 
Basic failure patterns and equations for one, homogeneous layer and a multi-layered system are 
described as follows. 
 
One, Homogeneous Layer 
The shear surface assumed in the model analysis for a homogeneous layer of material consists of a 
lower boundary, identified in Figure 13, as abcd.   This surface consists of two straight lines, ab and 
cd.  The portion of the shear surface shown as line ab is inclined at an angle, α1 to the horizontal, or 
 

1 45
2
φα = +   (82) 

 
 
while line cd is inclined at an angle, α 2 to the horizontal, or      
 

Failure Surface
y= y(x)

Tires

Active 
Rankine Zone

1
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3

2

Central (Prandlt) Zone

y= Y(x)
Ground 
Surface

Figure 12.  Assumed failure patterns and block movements. 
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2 45
2
φα = −   (83) 

 
According to Vesic' (c.f. Winterhorn 
1975), the shape of curve bc 
connecting the two straight lines of 
the shear surface depends on the 
angle of internal friction, φ, and the 
ratio, γC/q, where 
 
        γ = unit weight of the bearing 

layer of material, 
        C = width of the loaded area, 

or footing, and 
        q = distributed load acting on 

the surface of the bearing 
layer. 

      
When the ratio γC/q approaches a 
value of zero, the connecting curve 
becomes a logarithmic spiral in 
which γ equal zero degenerates into a circle. If the term, γC, is not zero, the connecting curve lies 
between a spiral and a circle when the value of φ is not zero. If the soil is frictionless (φ equal to 
zero), then the connecting curve is a circle.  According to Vesic' (c.f. Winterhorn and Fang 1975), 
these findings have been confirmed experimentally. 
     To describe the shape of the shear surface abcd in Figure 14 for use in the pavement bearing 
capacity computer model, the x- and y- coordinates of points a, o, b, c, and d must be established. 
After these points have been defined, the coordinates, xs (the x-coordinates of the sides of the slices) 
and ys (the y-coordinates of the shear surface at the sides of the slices) may be determined. The 
coordinates of point a, xa, and ya are assumed. The x- coordinate of point (o, xo) is assumed and 
depends on the width of the footing, C, or  
 

o aC = -x x ,    (84) 
  
and 
 

o a= C +x x .  (85) 
 
The y- coordinate, yo, is arbitrarily selected, or assumed. The coordinates of point b, xtn, ytn, may be 
defined by first computing the radius, r1, of the spiral, 
 

sin
sin

1
1

C=r α•
Ψ

  (86) 

 
where Ψ = 90 - φ.  Line ab is assumed to be tangent to the log spiral curve at point b.  After 
determining r1, the coordinates of point b are defined as: 
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Figure 13.  Exit and entry angles for a homogeneous
bearing media. 
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cos1 1tn o= -x x r Ω   (87) 
 

and 
 

sin1 1tn o= -y y r Ω   (88) 
 
where 

 
.1 1= 180 - -α ΨΩ   (89) 

 
 
The initial radius, ro, of the logarithmic spiral, at the top of the bearing surface (see Figure 14) is 
defined by the expression: 
 
 
 

tan1(- )
o 1= er r φ•Ω•   (90) 
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x
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Figure 14.   Geometric quantities defining the shape of the shear surface in a homogenous
bearing media. 
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Line cd is assumed to be tangent to the logarithmic spiral at point c. The coordinates of point c may 
be defined after the spiral radius, r2, is determined. This radius is obtained from the expression: 

  
 

tan2(180- )
2 o= er r φ•Ω• ,  (91) 

  
where 

 
2 2= -αΨΩ   (92) 

  
 
Coordinates of point c may now be defined by the following expressions: 

 
cos2 2tm o= + ( )x x r • Ω   (93) 

 
and 

sin2 2tm o= + ( )y y r • Ω   (94) 
  

 
The x-coordinate, xd, of the point d may be determined by first computing the value of r2 in Equation 
84 (Figure 14).   After r2 is determined, the distance B may be calculated using the law of sines, or 
 
 

sin
sin

2

2

(180 - )rB =
α

• Ψ
  (95) 

 
Hence, 

 
d o= + Bx x   (96) 

  
 
The  y-coordinate, yd, may be found from the following expression: 

 
 

tand tm 2d tm= +( - )y y x x α    (97) 
  
 

 
After the coordinates a, b, c, and d are defined, the y-coordinate, ys, of the intersection of the x-
coordinate of the side of any given slice i and the shear surface may be determined.  The potential 
failure mass is divided into a selected number of slices, n, as shown in Figure 15, or 
 
 

.a d-x xx =
n

∆   (98) 
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where ∆x is equal to the width of each slice. For the x-coordinates, xs, at the sides of slices that lie 
between points a and b, the y-coordinates, ys, may be computed from the expression: 
 
 
 

tan 1 a i tns a tm o= -( + )       ( < < )y y y y x x xα .  (99) 
  

 
 
Similarly, for the x-coordinates, xs, at the sides of slices that lie between xtm and xb, the y-
coordinates, ys, located on the shear surface may be computed from the expression: 

 
 
 
 

tanb tm 2 tm i tns tm= +( - )       ( < < )y y x x x x xδ   (100) 
 

For the x-coordinates at sides of slices that intersect the shear surface between points b and c (the 
connecting logarithmic spiral), the corresponding y-coordinates, ys, cannot be computed straight-
forwardly since the angle, ωxi, corresponding to a given x-coordinate of the side of slice i is 
unknown. The problem may be solved by using an iterative scheme. The iterative scheme is 

Potential Failure Mass

Failure Surface
y= y(x)

Slice i

Y= y(x)

y= y(x)

Y

X

ax

d ax xx
n
−∆ =

n =Number of Slices

dx
a

b
c

d

Figure 15.   Division of theoretical failure mass into a number of slices and method of computing
the width of each slice. 
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performed by assuming, initially, a value of the angle, ωxi, and a value of ysi. To start the iteration for 
the first x-coordinate, xs, which lies between xtn and xtm, the following assumptions are made 
 

s tn=y y   (101) 
  

and 
 

n 1=Ω Ψ .  (102) 
 
Iteration is performed on the following expression: 

 

[ ]
tan

tan

cos
sin cos tan

1

1

( )
ocdot 1o s

(n+1) n )
o 1 1

( - ) -   x x e r
= -

  -er

φ

φ φ

Ω

Ω

  Ω Ω Ω
  •Ω Ω 

. (103) 

When 
 

( tan
0 0( ) cos ,n

nsx x e rφΩ  − − ≤ ∆Ω                              (104) 

 
 
where )= a selected value, then 
 

 
(n+1) n≈Ω Ω ,    (105) 

 
 
and the correct angle, ωxi, is found that corresponds to the x-coordinate of slice i.   A selected value 
of 0.0001 is used for ∆ in the bearing capacity computer program. The y-coordinate, ys, may be 
computed from the following expression: 
 
 

tan sin(n+1)(  )
o n+1s o= -y y er φ•Ω  Ω  .  (106) 

 
 
For each x-coordinate of the side of each slice that lies between the x-coordinates, xtn and xtm, the 
iterative scheme is repeated so that corresponding y-coordinates, ys, may be determined. 
Convergence is very rapid using this scheme. 
 
Multilayered Bearing Medium 
Bearing capacity calculations involve a certain degree of uncertainty and complexity when the 
problem involves more than one layer of material. The failure pattern, or the shape of the shear 
surface, of a multilayered medium is not as evident as the shear surface shape associated with only 
one layer of material. No bearing capacity, experimental information concerning the failure patterns 
of multilayered systems could be located in published literature.  An approach was assumed, as 
shown in Figure 16.  The approach adopted for approximating the failure pattern, or shear surface, of 
the multilayered medium is based partly on theoretical considerations. For a given multilayered 
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bearing medium, the shear surfaces, identified as lines aa1,…......am-1am, and amb in Figure 16, are 
assumed to lie at angles to the horizontal as follows: 
  

2

1
a 1= 45 +         (Line )aa2

φθ   (107) 

 

2

2
1 2a = 45 +         (Line )a a

2
φ

θ   (108) 

 

3 2 3
1

a = 45 +         (Line )a a
2
φθ  (109) 

 # # #  

(m-1)

(m-1)
(m-1) m= 45 +       (Line )a aa 2

φ
θ  (110) 

 
 

m

m
am = 45 +         (Line )a b2

φ
θ ,  (111) 
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Figure 16.  Assumed shear surface of the active wedge in a multilayered bearing medium. 
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where m is the total number of layers of the multi-layered bearing medium and φ1, φ2,.....φ(m-1), and 
φm are the angles of internal friction of the individual layers, respectively, of the bearing medium. 
The angles, θ1, θ2,....., θ(m-1), and θ m are the entry angles of the shear surface of the active block 
(number 1 in Figure 16). 
     At point a, the x-and y-coordinates are known, or assumed. The problem consists of determining 
the points of intersections (points a1, a2,…......a(m-1)) of the shear surfaces passing through the 
individual layers and the boundary layer lines. The y-coordinates of these points of intersections are 
known since the elevations of the boundary layer lines are known.  Boundary layer lines are assumed 
to be horizontal.  The x-coordinates of the points of intersection may be determined from the 
following equations: 

 
tan

tan
a1a a1

a1
a1

- +y y=x
θ

θ
  (112) 

 
tan

tan
a2a1 a2

a2
a1

- +y y=x
θ

θ
  (113) 

 # # #   

tan
tan

(m-1)m-1 n
m

(m-1)

- +y y
=x

θ
θ

  (114) 

  
 
Since the active block is assumed to be symmetrical, the x-coordinate of point b is determined from 
Equation 114.  The y-coordinate of point b is calculated from the following equation: 
 

 
( ) tantn n n tn amb = y y x xy θ= + −   (115) 

 
 
The points (identified as cm, c(m-1), ....., c2, and c1, in Figure 17, of the intersection of the shear surface 
(passive wedge 3) passing through each layer of the bearing medium and the boundary layer lines 
cannot be defined until the x-and y-coordinates of point c are determined. Although the assumption is 
made that points b and c are connected by a logarithmic spiral, the spiral terminating at point c 
cannot be computed since it is uncertain which φ value should be used to compute the spiral radius, 
r2.  There may be several different φ values in a multi-layered medium. To overcome this problem, 
and for approximating the size of the passive wedge, an effective φ-value is calculated and used to 
compute the coordinates of point c in Figure 17. This value, φθeff, is an angle between an imaginary 
line connecting points a and b and the horizontal line and is estimated in the following manner (see 
Figure 17): 
 

eff
eff = 45+

2
φ

θ   (116) 

  
 
and, rearranging terms, 
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tan -1 tn a
effeff

tn a

-y y= 2( - 45)=
-x x

φ θ
 
 
 

  (117) 

 
After computing φeff, ro and r1 may be determined from Equations 86 through 91.  The φeff value 

obtained from Equation 85 is used in these equations. The radius, r2 (an imaginary line connecting 
Points o and c) is computed from Equation 91 using the value of φeff.  After r2 is found, the x-and y-
coordinates of Point c are calculated from Equations 96 and 97.  Starting at Point c, the x-and y 
coordinates of cm, cm-1, ....., c2, c1 may be computed.  The y-coordinates of these points are known 
since the boundary layer lines are assumed to be horizontal and the elevations of these points are the 
same as the elevations of boundary layer lines. The x-coordinates of Points cm, cm-1, ..... c2, and c1 
may be computed from the following expressions: 

 
 

tan
tan

tm pmcm tm
cm m

m

( - )+y y x= , (line )x cc
θ

θ
  (118) 

  
 
 

tan
tan

c p(m-1)c(m-1) c(m-2)
c(m-1) m m-1

p(m-1)

( - )+y y x
= ,( )x LineC C

θ
θ

 (119) 
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Figure 17.  Method for estimating the effective value of Neff. 
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tan

)
tan

c2 p2c1 c2
1 2 1

p2

( - )+y y x= ,(Linex C C
θ

θ
•

  (120) 

  
tan

tan
c1 p1d c1

d 1
p1

( - )+y y x= ,(Line d)x c
θ

θ
•

  (121) 

 
 
 
 
Equations 107 through 121 are used to determine the x-and y-coordinates at Points a1, a2, ....., a(m-1), 
am, b, c, cm, cm-1, ....., c2, c1, and d and to define the general shape of the shear surface passing 
through the multilayered bearing medium. After these coordinates are determined, the potential 
failure mass is divided into a selected number of slices, n, or 
 

 
d a-x xn =

x∆
  (122) 

 
and 
 

 
si a= + x nx x ∆ •   (123) 

 
 
 
where xsi is defined as the side of any given slice i.  After the sides of the slices are defined, the y-
coordinates, ys, which lie on the shear surface at the intersection of the sides of the slice, xs, and the 
shear surface may be computed in a fashion similar to the one described previously for the 
homogeneous case.  Each segment of the shear surface passing through each layer is considered. 
Since the potential failure mass is divided into rectangular slices and considering that the thicknesses 
of individual layers of the multilayered medium may be very thin, a large number of slices are used. 
In the analyses shown herein, the potential failure masses were divided into 598 slices (any even 
number of slices may be used).   
     To facilitate the use of the approach proposed by Hopkins, all algorithms were programmed for 
the computer using the Fortran language (Hopkins 1986).   The Hopkins limit equilibrium approach 
has been used very successful in solving hundreds of a variety of slope stability and bearing capacity 
problems involving no tensile forces (Hopkins 1986, 1991; Slepak and Hopkins 1993, 1995a, and 
1995b).   The model yields solutions that are within about 1-3 percent of solutions obtained from the 
Morgenstern-Price and Bishop models.  The model has been used extensively in developing remedial 
solutions for a number of major landslides in Kentucky.   Later comprehensive studies by Slepak and 
Hopkins (1993 and 1995a) showed that, in some cases, the proposed approach did not always 
converge when tensile reinforcement forces were introduced in the Hopkins’ equations, although 
convergent problems did not occur for stability problems that did not involve reinforcement.  
Consequently, studies were refocused to finding an approach that would permit the introduction of 
tensile element forces without divergence.   
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     In studies conducted by Slepak and 
Hopkins, several different approaches 
were attempted (Slepak and Hopkins 
1993, 1995a, and 1995b) in finding a 
suitable mathematical model that would 
solve stability problems involving tensile 
forces.  The development of a model 
where tensile element forces could be 
included in the system of equations is 
described and discussed below.   Much of 
this discussion is essentially a recast of 
the work reported in detail by Slepak and 
Hopkins (1993, 1995a, and 1995b).            

 
 

SLEPAK-HOPKINS LIMIT 
EQUILIBRIUM MODEL 

 
As mentioned earlier, none of the 
equations of solid mechanics satisfy 
explicitly everywhere inside or outside 
the failure surface.  The limit equilibrium 
method represents an alternative to 
equilibrium equations of solid mechanics.  
As an alternative to equilibrium equations 
of solid mechanics, the limit equilibrium 
method considers either equations of 
equilibrium for vertical slices, or 
equilibrium equations for a soil mass 
bounded by the slope surface and the 
shear surface, as depicted in Figures 18 
and 19.  Consequently, two equivalent 
formulations of a slope stability problem 
are possible. 

     As one approach, referred to hereafter as Formulation 1, the equilibrium method may consider the 
equilibrium equations for vertical slices shown previously in Figure 4, or depicted in Figure 18 in a 
slightly different form.  Details of Formulation 1, referred to as the “slices” method was presented 
above and will be recast in an integral form below.  The soil mass bounded by the slope surface and 
failure mass is divided into slices, as illustrated in Figure 3, or Figure 19.  A second approach may be 
formulated by considering the overall equilibrium equations of the soil mass bounded by the slope 
and shear surface.  Both Formulations 1 and 2 are described below.          
 
Limit Equilibrium Method.  Formulation 1 (Without Tensile Forces) 
 
Taking into consideration Equations 4 and 5, the slice equilibrium equations for the soil mass 
bounded by the slope surface Y (x) and any particular shear surface y (x) could be written in a form 
(Janbu, 1954; Morgenstern and Price, 1965; and Hopkins, 1986, 1991):    
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( tan ) x
dH q
dx

τ σ θ= − + +             (124) 

 
 

tan ( )y av
dv q h
dx

σ τ θ γ= − − +        (125) 

 
 

( ) tan ( )t
x Q

d Hh V H q y y
dx

θ= − + −  (126) 

 
 
where  

'' ( ) tanc u
F

σ φτ + −= , (127) 

 
 

x yq and q =  distributed horizontal and vertical external forces, psf, 
 

H and V = horizontal and vertical interslice forces, lbs/ft. 
, ,t th y y ft= −  

 
ty y= -coordinates of the thrust line, ft,  

 
Qy y= −coordinates of points of application of qx, ft, 

 
 θ  =  angle between the tangent to the failure surface and horizontal, 
 
 avγ = the distribution of the average total unit weight of the soil above y (x), pcf. 
 
This quantity is related to the conventional unit weight ((), by the relation   
 
 

( )

( )

Y x

y x
av

dy

h

γ
γ =

∫
  (128) 

 
 

( ) ( )h Y x y x= −    (129) 
 
 
where h = height of slices, ft. 
     All of the variables in Equation 124 through 129 are shown in Figures 19 and 20.  Appropriate 
boundary conditions should be added to the system of Equations 124 to 127, namely: 
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( )a aH x H=   
( )b bH x H=  
( )a aV x V=   (130) 
( )b bV x V=  

 
 
The system of Equations 124 to 127, with the boundary conditions Equation 130, is statically 
indeterminate because there are only four equations available to determine five unknowns functions 
H (x), V (x), F(x), J(x), and ht (x).  This system of equations may have an infinite number of 
solutions.  To narrow the range of possible solutions, some physical admissibility criteria are usually 
considered (Chen and Morgenstern, 1983).  Two additional functions related to the set of original 
unknown functions are the thrust ratio,   
 
 

th
h

η =   (131) 

 
 
 
and the average factors of safety on vertical slides of slices: 
 
 

( ) tanav av av
v

c H u hF
V

φ+ −=  (132) 

 
where cav, Nav, and uav  are the average weighted values of c’, N’, and u, respectively.  
     It is required usually that: 
 

0 1η≤ ≤  (133) 
 

v
ve

FF
F

=  (134) 

 
where F is defined by Equation 127. 
     It should be mentioned that taking account of admissibility criteria, Equations 133 and 134, does 
not necessarily lead to a rigorous solution of t problem because this solution is still obtained within 
the framework of approximations of a limit equilibrium method (see above).  At the same time, 
however, any rigorous solutions of a problem formulated as a problem of plasticity theory will satisfy 
both criteria 133 and 134.   
     Admissibility criteria, Equations 133 and 134, narrow a range of possible solutions of the system, 
124 to 127 Equations and Equation 130, but this system still remains statically indeterminate.  To 
provide statical determinacy to the system under consideration, some additional assumptions are 
usually required.  These assumptions will be considered next.  It is only emphasized that any 
additional assumption that leads to a statical determinacy of the system of equations, 124 to 127 and 
130, automatically defines a function F(x) of a normal stress distribution along the slip line, y (x).  
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Therefore, the factor F in Equation 127 that is completely defined by the functions F(x) and y (x) 
represents a functional of two functions: 
 
 

F F{ y(x), (x)}.σ=                                                                                                             (135) 
 
 
This functional is termed (Baker and Garber, 1978) the safety functional, to be distinguished from the 
factor of safety Fs, which is the minimum value of F: 

 
minsF F{ y(x), (x)}.σ=                                                                                                     (136) 

 
Consequently, a stability problem may be formulated in the following way: 
 

Formulation 1: Among all functions ( ), ( ), ( ), ( ), ( )y x H x V x x and xσ τ that satisfy 
equilibrium Equations 124 to 127 and boundary conditions 130, find the functions that provide 
the minimum value Fs of the safety functional, Equation 135, and meet admissibility conditions, 
Equations 133 and 134. 

 
Limit Equilibrium Method.  Formulation 2 
 
The stability problem may be formulated in another manner using the limit equilibrium method.  In 
this approach, the overall equilibrium equations for a soil mass bounded by the slope surface, Y (x), 
and s, slip surface y (x), with Coulomb’s failure criterion, Equation 127, satisfied along the slip 
surface (Baker and Garber, 1978):    
 

   
' '( tan ) (tan ' tan ) 0b b b

a a a

x x x

zx x x
c u dx F dx F q dxφ σ φ θ− − − + + =∫ ∫ ∫  (137) 

 
 

' '( tan ) tan ( tan ' tan ) ( ) 0b b b

a a a

x x x

y avx x x
c u dx F dx F q h dxφ θ σ φ θ γ− − − + + =∫ ∫ ∫  (138) 

 
 

' '( tan )( tan ) ( (tan ' tan ) ( tan ' tan )b b

a a

x x

y xx x
c u y x dx F F dxφ θ σ φ θ σ φ θ − − + + + − − ∫ ∫   

 
  

( ) 0b b

a a

x x

Q z av yx x
F y q dx F x h q dxγ− + =∫ ∫ .  (139) 

 
 
 
Variables in these equations have the same meaning as before.  The quantity F depends on the 
functions y (x) and F(x).  Therefore, F can be again considered as a safety functional, Equation 136, 
of two functions y (x) and F(x).  So far, there was no attention paid to interslice forces and Equations 
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124 through 130.  At the same time it is to see that any assumption made with respect to selecting a 
function F(x) will lead to a certain set of functions H, V, and ht, and the admissibility criteria given 
by Equations 133 and 134 may not be satisfied.  In other words, admissibility criteria expressed by 
Equations 133 and 134 put some restrictions to selecting a function of normal stress distribution F(x).    
Hence, a stability problem can be formulated in the following way: 
 

Formulation 2:  Among all functions y (x) and F(x) that satisfy Equations of overall 
equilibrium 137 –139, find the functions which provide the minimum value Fs of the safety 
functional 135 and physically admissible interslice characteristics H, V, and ht (Equations 
133 and 134).  

 
     Formulations 1 and 2 of a stability problem are equivalent to each other.  In the following 
sections, different limit equilibrium methods are discussed. 

 
Limit Equilibrium Methods Based on Formulation 1 
 
Several methods have been developed for the stability of slopes in which the failure surface may 
have any arbitrary shape and the differential equations of equilibrium, 124 to 127, are satisfied.  In 
each method, however, additional assumptions are made to render a statical determinacy to the 
system under consideration. Slepak and Hopkins reviewed several limit equilibrium methods in 
efforts to select an appropriate procedure to use without and with tensile forces. 
     In Janbu (1954, 1957), the thrust line ht is assumed.  This assumption makes the problem statically 
determinate, because for four unknown functions H, V, F, and J, four equations 124 through 127 are 
available.  Using the overall horizontal equilibrium equation as a stability criterion, an iterative 
procedure was developed for the factor of safety determination.  It was shown by Morgenstern and 
Price (1965) that convergence problems may arise using Janbu’s method, especially in cases with 
high cohesion.  To overcome these difficulties, Hopkins (1986, 1991) used a special numerical 
technique to obtain derivatives of interslice forces involved in the Janbu’s iterative procedure.  In 
contrast to the original Janbu’s method, Hopkins’ method provides rapid convergence for a wide 
range of practical problems (Hopkins, 1986, 1991).  
     Another assumption to make the problem statically determinate was made by Morgenstern and 
Price (1965).  They assumed a linear relationship between interslice forces: 
 

 
 ( )V f x Hλ=  (140)     

 
 
where  8- is an unknown parameter;   

f(x)- is an assumed but known function. 
 
By substituting Equation 140 into the original system of equations 124 through 127 the system 
finally results in a system of two equations with respect to 8 and F: 
 

( , )
bx bH F Hλ= =  

( , ) 0
bxM Fλ= =  (141) 

where    
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( )
bx bH H x=  

 
( )

bx bM M x=  (142)   
 

( ) ( ) ( )tM x H x h x= .  
 
 
To obtain a solution of the system 141, initial approximations for 8 and F are assumed.  Successive 
approximations are obtained using the Newton-Raphson technique.   
     Hardin proposed a similar approach (1984).  He used the same assumption 140 as in the 
Morgenstern and Prices’s method but another equation to obtain 8 and F.  Instead of Equations 143, 
he used overall equilibrium equations. 
     Spencer (1967, 1973) proposed a method that assumes the interslice forces to be parallel.  He 
found the results to be fairly accurate and gave some attention to obtaining an acceptable position for 
the line of thrust in terms of effective stresses. 
     The most detailed discussion of the admissibility criteria (Equations 133 and 134) is by Chen and 
Morgenstern (1983).  They extended the original generalized method of slices (Morgenstern and 
Price, 1965) and developed special numerical procedure for formally exploring the bounds of the 
factor of safety within the limits of physical admissibility.  It was shown that, consistent with earlier 
studies, the variation in the factor of safety when subjected to conditions of physical admissibility is 
small for all practical purposes.  This analysis confirms the view that variations in the factor of safety 
between several methods in common use are of little practical significance.   
 
Limit Equilibrium Methods Based On Formulation 2. 
 
In this class of methods, overall equilibrium equations are considered as main equations.  Differential  
equations of equilibrium for interslice forces should be considered to check admissibility criteria. 
     Taylor’s method (Taylor 1937) satisfies all equilibrium requirements, but makes arbitrary 
assumptions with respect to both the kinematical function y (x) and the stress function F(x).  Taylor’s 
method is based on the assumption that kinematical function represents a circular arc, while the stress 
function is distributed as sin x.   
      Another group of methods is represented by logarithmic-spiral methods (Rendulic, 1935; Taylor, 
1937; Frolich, 1935; Wright, 1969; Huang and Avery, 1976).  Log-spiral methods are based on the 
properties of log-spiral functions that the resultant of the elementary normal and frictional forces 
passes through the pole of the spiral.  Consequently, in this case the moment equation about the pole 
is independent of F and may be used for the determination of the factor of safety regardless of the 
normal stress distribution; i.e., the problem of sliding along a logarithmic spiral is statically 
determinate.  Furthermore, the stress function F(x) can always be selected to satisfy admissibility 
criteria (Equations 125 and 126).  That makes log-spiral methods not only statically consistent but 
also physically admissible.  Therefore, these methods could be good independent checks for other 
methods.  It is necessary to note that log-spiral methods are only applicable in the case of 
homogeneous soils with c’ equal to a constant, and tan N’ equal to a constant. 
     The first attempt to formulate the slope stability problem as a variational problem in terms of 
Formulation 2 (see above) was made by Kopacsy (1955).  A reappraisal of Kopacsy’s analysis by 
Baker and Garber (1977a) shows that this analysis contains a number of serious errors and 
misconceptions.  An improved variational formulation of the slope stability problem was presented 
by Baker and Garber (1977b).  This formulation applies to the case of homogeneous and isotropic 
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soil, without pore water pressure or external loads.  Baker and Garber (1978) later extended their 
approach to the general case of non-homogeneous, non-isotropic soil with arbitrary distribution of 
pore pressure and external loads.  They proved that the minimal factor had to occur on slip surfaces 
with a special geometrical property.  The geometrical property ensures that the resultant of the 
infinitesimal and frictional forces either pass through a common point or are parallel to a common 
direction.  It is shown that as a result of this geometrical property the minimal factor of safety is 
independent of the normal stress distribution along the critical slip surface.  In the homogeneous and 
isotropic case, the analysis shows that the critical slip surface may be either a lo-spiral (rotational 
failure mode) or a straight line (translational failure mode).  In a layered profile, the critical slip 
surface may consist of a series of log-spirals that have a common pole or a series of straight lines.  In 
some cases, the boundary between layers may be part of the critical slip surface.  Baker and Garber 
(1978) suggested a simple computational scheme for the determination of the factor of safety and the 
critical slip surface.  This computational scheme is only slightly more laborious than generally used 
simplified Bishop’s method.  It was also proved by Baker and Garber (1978) that for the 
homogeneous and isotropic case, without pore water pressure or external loads, the solutions 
provided by Rendulic (log-spiral) and Culmann (straight-line) are not only convenient, but also 
correct.  The two methods are related to the two possible modes of failure (rotational and 
translational). 
     It is necessary to note that those variational formulations of the problem are criticized by some 
researchers (De jong, 1980, 1981; Luceno and Castillo, 1981).  According to De Jong (1980), the 
variational approach leads to a weak extremum (or no extremum at all and therefore it produces 
unsafe predictions for slope stability problems.  At the same time, it was shown by Castillo and 
Luceno (1983) and Leshcinsky et al. (1985) that the procedure based on variational formulation of 
the problem yields a result that is equivalent to an upper-bound solution in the strict framework of 
limit analyses of plasticity.  Subsequently, although the variationally obtained y(x) signifies a 
stationary result by virtue of satisfying Euler’s equation, it may actually yield a local minimum or 
inflection value of Fs in the context of limit analysis (Leshchinsky, 1990). 
     At the same time, encouraging results were obtained by Leschinsky (1990).  Based on the results 
by baker and Garber (1978), he developed an approximate procedure for evaluation safety factors for 
any kind of arbitrarily selected slip surfaces.  For each arbitrarily selected y (x), Leshchinsky (1990) 
used Euler’s equation for normal stress distribution F(x) obtained by Baker and Garber (1978).  The 
specified y (x) that yields the minimum Fs is considered the critical surface.  Using this approach, 
however, it is explicitly being assumed that among all possible stress distributions, the variationally 
determined F(x) leads to Fs, which is a genuine minimum for all specified y(x).  Leshchinsky 
considered three example problems.  For all three examples, he found the line of thrust to be 
reasonable.  This result indirectly supports the original variational approach by Baker and Garber 
(1978). 
     Another group of methods which is based on overall equilibrium equations is known as a group of 
perturbation methods Raulin et al, 1974).  In these methods, any arbitrarily selected slip line can be 
analyzed.  As first step, an approximation for the normal stress distribution is considered: 
 
 
 

2
0 ( ) ( ) cos sin cos .av y xx h q qσ γ θ θ= + +   (143) 
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Equation 143 is based on the assumption that the normal stress distribution is not affected by 
interslice forces.  The real normal stress distribution is assumed in the following form: 

  
( ) ( ) ( )ox x xσ ω σ= +     (144) 

 
 
where T(x) is a perturbation coefficient.  Raulin et al (1974) considered three possible expressions 
for T(x): 
 
 

( ) tanxω λ µ θ= +    (145) 
 

2( ) tanxω λ µ θ= +  (146) 
  

2( ) tan tanxω λ θ µ θ= + . (147) 
 
 
By substituting any of expressions 145 to 147 into Equation 144 and then into equilibrium equations, 
one can obtain three algebraic equations with respect to three unknowns , .and Fλ µ    
     It was shown by Raulin et al (1974) that all three perturbation methods based on Equations 175, 
146, or 147 provide practically the same values of factors of safety. 
 
Simplified Limit Equilibrium Methods 
 
The methods considered above were statically consistent.  That is, three equilibrium equations, either 
overall or differential) were always satisfied.  Some methods satisfy some of the equilibrium 
equations and ignore the others.  Those approaches are referred to as simplified methods. 
 
Ordinary Method of Slices  
Ordinary method of slides, which is also called Fellenius’ (1927, 1936) method, satisfies only one 
condition of equilibrium, that is, overall moment equilibrium around the center of a circular slip 
surface –the method is only applicable to a circular slip surface. In this method, resultant of all side 
forces on any slice acts parallel to the base of a slice.  Ordinary method of slices does not satisfy 
either horizontal or vertical force equilibrium for the mass above the slip surface, but it provides a 
simple procedure for the determination of the safety factor. 
     Bishop’s (1955) modified method provides a more rigorous approach by including the interslice 
forces in the equations of equilibrium of a typical slice.  This method satisfies the overall moment 
equilibrium equations around the center of the circle and vertical equilibrium equation for each slice.  
However, the method is applicable only to circular slip surfaces.  The method does not satisfy 
horizontal force equilibrium or individual slice moment equilibrium equations.  The solution of the 
problem is obtained by iteration.  
 
Bishop’s Method 
Bishop’s modified method provides a more rigorous approach by including the interslice forces in 
the equations of equilibrium of a typical slice.  This method satisfies the overall moment equilibrium 
equation around the center of the circle (the method is only applicable to circular slip surfaces) and 
vertical equilibrium equation for each slice.  The method doses not satisfy horizontal force 
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equilibrium or individual slice moment equilibrium equations.  The solution of the problem is 
obtained by iteration.    
 
Force Equilibrium Methods 
Another group consists of methods that use only force equilibrium conditions.  These include a 
method proposed by Lowe and Karafiath (1960), a method developed by Seed and Sultan (1967) and 
various methods in which the slip surface is assumed to consist of two or three plane segments 
(Chowdhury, 1978) –commonly referred to as “wedge” or “sliding block’ methods, and any other 
methods that satisfy only force (not moment) equilibrium.  In all such methods, the analysis can be 
accomplished by trial-and-error graphical procedures wherein a value of F is assumed and a trial 
force polygon is drawn for each slice or wedge.  If the last slice is in equilibrium, the assumed value 
of F is correct.  The analysis may be accomplished by a numerical equivalent of this graphical 
procedure.      
 
Comparison of Different Limit Equilibrium Methods 
 
According to Duncan and Wright (1980), methods that satisfy all conditions of equilibrium (log 
spiral, Janbu’s, Spencer’s, and Morgenstern and Price’s methods) all give essentially the same value 
of Fs .   Studies of non-homogeneous slopes and dams, and non-circular slip surfaces, show a slightly 
wider disparity in the values of Fs calculated by those methods.  Those studies indicate that for any 
practical slope stability problem, any method which satisfies all conditions of equilibrium will give a 
value of Fs which differs by no more than "5 percent from what may be considered the “correct” 
answer.  Thus, although there is no mathematical proof that the values of Fs calculated from Janbu’s, 
Morgenstern-Price’s, and Spencer’s methods are rigorously correct, from a practical point of view 
there is no doubt that they may be considered to be correct for all practical purposes. 
     Bishop’s method, which does not satisfy all conditions of equilibrium, gives virtually the same 
value of Fs as methods that satisfy all conditions of equilibrium.  Thus, for analyses of circular slip 
surfaces, no more elaborate method need to be used (Morgenstern and Price, 1965; Duncan and 
Wright, 1980).    
     Ordinary method of slices which is applicable only to circular slip surfaces gives values of Fs that 
are lower than those calculated by more accurate methods.  For u (pore water pressure) equal to zero 
conditions (in practical terms these would be total stress analyses), the inaccuracy is no more than a 
few percent.  For effective stress analyses with high pore pressures, the inaccuracy may be as much 
as 50 percent.  Thus, while ordinary method of slides may be applied to total stress analysis, it should 
not be used for effective stress analyses with high pore pressure (Duncan and Wright, 1980).     
     For N’ = 0 conditions, any method which satisfies moment equilibrium around the center of a 
circular slip surface will give the correct value of Fs, regardless of what other equilibrium conditions 
it does or does not satisfy (Duncan and Wright, 1980).  Thus, the ordinary method of slices, Bishop’s 
method, Morgenstern-Price’s method, and Spencer’s method all give the same value of Fs for 
circular slip surfaces and N’ = 0 conditions. 
     The factor of safety calculated by force equilibrium procedures is significantly affected by the 
assumed side force inclination (Duncan and Wright, 1980).  Of all the possible assumed inclinations 
for these forces, the one suggested by Lowe and Karafiath (1960) appears to be the most generally 
applicable.  They proposed that the side force inclination at the interslice boundary should be 
assumed to be the average of: 
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o the inclination of the ground interslice surface at the top of the interslice boundary and  
o the inclination of the slip surface at the bottom of the interslice boundary.  

 
Use of Limit Equilibrium Methods in the Stability Analysis of Reinforced Earth Structures  
 
The concept of reinforcing an earth structure by incorporating geosynthetics that possess a much 
higher tensile strength than soil, and the capability to bond with soil through friction has gained great 
popularity in recent years.  Polymer based soil reinforcing materials are finding increased use in 
permanent, critical applications, such as reinforced flexible asphalt pavements, reinforced soil 
retaining walls, steep fills, and earth dams.  Those uses are in contrast to earlier soil reinforcement 
applications such as unpaved roads, temporary retaining walls, and low-height embankments where 
the reinforcement function was often temporary or where the consequences of failure were not 
severe.   
     In walls reinforced with geosynthetics, the sheets of geosynthetics are used to wrap layers of 
compacted soil producing a stable composite structure.  Advantages of reinforced walls over      
conventional concrete walls include (Leshchinsky and Perry, 1987): 
 

o in many cases, the reinforced wall economics compares favorably with convential walls 
–usually the cost is much less; 

o the construction of reinforced walls is simple and rapid; and  
o the reinforced wall is flexible, thus it can undergo significant deformation or sustain 

significant dynamic impacts.  
 
     Moreover, tensile elements --geosynthetics reinforcement materials-- have expanded the practical 
options for design of soil slopes.  Those materials permit construction of slopes at angles steeper than 
the angle of repose of the soil fill, thereby reducing land requirements for slope construction and 
often eliminating the need for retaining walls.  Steep reinforced soil slopes frequently provide 
economic advantages over traditional design alternatives.   
     The main performance criterion for a reinforced structure is stability against sliding of the soils 
comprising the structure. The common practice concerning reinforced soil structures analysis 
consists in utilizing traditional limiting equilibrium methods originally developed for unreinforced 
soil stability analysis.  Reinforcing forces are treated as known external forces.    
 
Two Definitions of the Factor of Safety 
Commonly, two approaches for incorporating the factor of design into limiting equilibrium design 
equations (Bonaparte et al., 1987).  The factor of safety can be defined as the ratio of the resistance 
(forces or moments) of the soil structure and foundation to the applied loading effects.  This approach 
is usually used in methods that treat the unstable soil zone as a rigid body (Schneider and Holtz, 
1986; Verduin and Holtz, 1989; Jewell, 1982; Ingold, 1982; Murray, 1982).  For example, in the case 
of a circular analysis, this definition will lead to a following expression for the factor of safety 
(Langston and Williams, 1989): 
 
 
 

 res q

dr

M M
F

M
+=   (148)  
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where Mres and Mdr are resisting and driving moments correspondingly (the same values as in 
unreinforced soil stability analysis) and Mg is the geosynthetics resisting moment.   
     Alternatively, the factor of safety can be applied to the soil shear strength to produce shear 
strength parameters.  This is the approach when the soil is considered to behave as a continuum 
(Schmertmann et al., 1987; Leshchinsky and Reinschmidt, 1985; Giroud and Beech, 1989; Gourc et 
al., 1989; Leschinsky and Perry, 1987).  In this case, the factor of safety is defined using the same 
expression, Equation 127, as in unreinforced stability analysis.   
     Those two approaches give answers that are close to each other for cases in which the soil weight 
and soil shear strength are the major destabilizing and stabilizing forces, respectively (Bonaparte et 
al., 1987).  For reinforced soil structure, the reinforcement forces can be large, and the two cited 
methods for calculating the factor of safety give different answers (Bonaparte et al., 1987).  In fact, 
since the soil and reinforcement often exhibit markedly different stress-strain behavior, no 
meaningful overall factor of safety can be defined for the reinforced soil structure.  That is why 
Bonaparte et al. (1987) recommended applying the factor of safety to the soil shear strength, i. e. to 
use the second definition of the factor of safety based on Equation 127. 
 
Treatment of Reinforcement Forces in Stability Analysis  
Internal failure may result from reinforcement rupture, reinforcement pullout, or a combination of the 
both.  Reinforcement rupture can occur when the tensile force required to maintain equilibrium at 
any elevation within the slope exceeds the available tensile force required to maintain equilibrium at 
any elevation within the slope, wall, or pavement exceeds the available tensile strength of the 
reinforcement.  Reinforcement pullout can occur when the frictional forces in active and passive zone 
(Figure xx) are less than the tensile forces required to maintain equilibrium.  The direction of the 
reinforcement resistance, T, is characterized by the angle $ (0# $#2).  In most applications, 
reinforcement forces are assumed horizontal ($ = 0) and their magnitude is assumed equal to long-
term tensile strength of a geosynthetics sheet under consideration. 
     However, since geosynthetics have no significant lateral stiffness and T is activated by soil 
differential movement, it is obvious that T is not horizontal ($>0).  Leshchinsky and Reinschmidt 
(1985), Leshchinsky and Perry (1987) assume that when failure of the composite structure occurs, 
the membrane at the slip surface will be inclined so as to contribute the most resistance, that is, be 
most effective.  A more rigorous approach is based on the principle of strain compatibility.  Although 
limiting equilibrium methods don’t allow taking strains in account, in the last few years, the 
importance of strains in the design of reinforced structures had been recognized (McGown et al., 
1984; Bonaparte et al. 1987; Beech, 1987; Wallace and Fluet, 1987; Delmas et al., 1986; Gourc et al., 
1989).  One of the primary reasons for this is that various types of strains are involved in the soil and 
reinforcement).  Since soil and reinforcement have different deformations, their strength cannot 
usually be mobilized at the same strains.  Consequently, both magnitude and direction of the 
geosynthetics resistance will depend on soil strains or displacements along the potential slip surface.  
In other words, strains of soil and reinforcement must be compatible.  The most rigorous limit 
equilibrium procedure accounting for strain compatibility was developed by Delmas et al. (1986) and 
Gourc et al. (1986, 1989).  In this method, the relationship between the displacement along the 
potential slip surface and inclination of the geosynthetic sheets at the points of intersection with the 
slip surface is established accounting for both rupture and pullout resistance of geosynthetics.  This 
allows calculation of the magnitude and the direction of the geosynthetics at any displacement ) of a 
sliding soil mass.  In the proposed procedure the factor of safety Fs is referenced to the soil strength 
parameters only (Equation 122).  The required value of Fs of the factor of safety is chosen (e.g. Fsr = 
1.5).  Different slip surfaces having initial values of Fs = Fso < Fsr for ) = 0 are considered.  
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Calculations stop when Fs = Fsr.  The slip surface having a maximum value of ) (maximum values of 
mobilized reinforcement resistance) is considered critical.   
     Another possibility for estimating the reinforcement forces consists of using finite element 
solutions of the plasticity theory.  This possibility is discussed by Rowe (12984), Rowe and 
Soderman (1985, 1987), Rowe and Myllerville (1989).  Rowe and Soderman (1985) developed a 
method of estimating the short-term stability of reinforced embankments constructed on a uniform 
purely cohesive foundation.  This approach maintains the simplicity of simple limit equilibrium 
techniques while incorporating the effects of soil-geosynthetic interaction in terms of allowable 
compatible strain for the geosynthetics.  This allowable compatible strain may be deduced from a 
design chart and depends on the foundation stiffness, the embankment geometry, the deposit depth, 
the unit weight of the fill, and the critical height of an unreinforced embankment.  As it was shown 
further (Rowe and Soderman, 1987; Rowe and Mylleville, 1989), this approach worked well since 
the reinforced collapse mechanism was similar to the unreinforced collapse mechanism.  However, 
this is not the case when embankments are constructed on a foundation where there is a significant 
strength increase with depth. 
 
Methods Commonly used in Reinforced Earth Stability Analysis 
Most methods commonly used in reinforced earth stability analysis are based on either force 
equilibrium methods (Tensar technical note, 1986a, b; Steward et al., 1977; Bonpaparte et al, 1987; 
Murray, 1982; Schneider and Holtz, 1986; Jewell et al., 1986; Schmertmann et al., 1987) or circular 
slip methods (Ingold, 1982; Jewell, 1982; Verduin and Holtz, 1989: berg et al., 1989). 
     Some authors used statically consistent methods.  For example, investigations performed by 
Leshchinsky (1984,1985), Leshchinsky and Reinschmidt (1985), Leschinsky and Boedeker (1989) 
are based on a variational approach proposed by baker and Garber (1978).  Gourc et al. (1989) used a 
perturbation method. 
      A comparative analysis of different methods for reinforced soil stability analysis was performed 
by Langston and Williams (1989) and Wright and Duncan (1991).  It was shown that methods that 
satisfy all conditions of equilibrium result in essentially the same value of factor of safety regardless 
of the assumptions they might involve.  Bishop’s method, although it does not satisfy all conditions 
of equilibrium, results in values of safety factors that are essentially the same as values calculated 
using methods that do satisfy all conditions of equilibrium.  As in the case of unreinforced analysis, 
force equilibrium methods provide safety factors that are strongly affected by the assumed inclination 
of side forces.   
 
Major Intent of This Study 
 
As described previously by Slepak and Hopkins (1993), there are different methods available for 
evaluating the stability of reinforced structures.  All methods built within the framework of limit 
equilibrium methods are approximate.  Research performed by Slepak and Hopkins was focused on 
finding a method that provided reasonable accuracy and at the same time could be easily used by 
practitioners.  The final method developed and proposed by Slepak and Hopkins, after an exhaustive 
literature review, has been described elsewhere (1983) and portions of this work are described in the 
following sections.  The merits based on a comprehensive comparative analysis ant the shortcomings 
of each method were outlined. The intents of the current study were to extend the Slepak and 
Hopkins model to solve the different bearing classes of problems involving layered soils reinforced 
with geosynthetics.  In particular, the following cases were of interest (in this current study): 
 

o Early construction of pavements involving aggregate bases reinforced with geosynthetics. 
o After construction cases involving flexible pavements reinforced with geosynthetics. 
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In developing a method of solving the above classes of problems it should be noted that the Slepak 
and Hopkins model provides solutions to a variety of the following problems: 
 

o Embankments, and other geotechnical structures, resting on unreinforced and reinforced 
foundations containing layered soils. 

o Embankment slopes reinforced (as well as unreinforced) with geosynthetics.   
o Earth walls reinforced with geosynthetics.     

  
 
To make the works readily useful 
to practitioners, windows software 
was written (L. Sun) using Sybase 
PowerBuilder 8.0 (1999a, b, c).  
Use of this software is detailed 
herein in a later section of this 
report.  Some important aspects of 
the mathematical theories 
developed by Slepak and Hopkins 
is detained below.  Portions of this 
work are repeated so that the user 
may understand how and why this 
model and computer software 
were structured.    
 

 
 
 

DEVELOPMENT OF MULTIPURPOSE LIMIT EQUILIBRIUM 
COMPUTER PROGRAM FOR REINFORCED EARTH STABILITY 

ANALYSIS 
 

General features of the program  
 
The computer program developed by Hopkins (1986, 1991) is used as a basis for the proposed 
multipurpose limit equilibrium approach.  In the adopted approach, calculations are based on 
assumptions that the safety factor is referred to the soil shear strength only and the reinforcement 
forces are treated as known external forces.  Although the forces should be derived from the principle 
of strain compatibility, in this study, a simple assumption with respect to reinforcement forces is 
made and, based on that assumption; the most reliable equilibrium method is selected.  After the 
basic equilibrium method is developed, extensions to this method can be made including more 
rigorous calculations of reinforcement forces based on a principle of strain compatibility.  Complete 
implementation of this principle is beyond the scope of this study, however, and may be considered 
as a proposal in the future. 
     Reinforcement forces, T, are considered horizontal and equal to (see Figure 20): 

 
min( , , )r a pT T T T=   (149) 

Failure Surface
y= y(x)

Tires

Active Zone

Passive Zone

3

2

y= Y(x)
Ground 
Surface

Reinforcement

r a pT min( T ,T ,T )=

Figure 20.  Treatment of reinforcement force(s) in bearing
capacity analysis.  
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where  
 

 
rT is a long term strength of a fabric= −  

 aT is a pullout resistance of a fabric in an active zone=  

pT is a pullout resistance of a fabric in a passive zone=  
 

 
and 
 

' ' ' ' ' '
1 2( tan ) ( tan )

a a

a i i i i j j i j
l l

T k c x k C xσ φ σ ψ= + ∆ + + ∆∑ ∑  (150) 

  
 

' ' ' ' ' '
1 2( tan ) ( tan )

p p

p i i i i j j i j
l l

T k c x k C xσ φ σ ψ= + ∆ + + ∆∑ ∑  (151) 

 
 
where 
 
 ;a pl and l lengths of a fabric in an active and passive zone correspondingly=  

 ' '
i ic and the soil effective strength parameters above the fabricφ =  

 ' ' ;j jC and the soil effective strength parameters below the fabricψ =

1 2

;

k and k the soil fabric interaction coefficients for soils above and below the

fabric correspondingly

= −
 

  
                                           

' ;i i iu effective normal stressσ σ= + =   (152) 

 ;iu pore pressure=  
 

.i
i av i yh qσ γ= +  (153) 

 
      
Though the assumptions expressed by Equations 149 to 153 simplify the problem, very often they 
may lead to reasonable results.  This research is basically methodological and it is the authors’ belief 
that from the methodological viewpoint these assumptions should work very well.  
     The computer program was originally structured in such a way that it can use different limit 
equilibrium methods according to the user’s choice.  All of these methods assume a two- dimensional 
failure mechanism.  These methods are discussed in the following sections.  Detailed information 
about the computer program is included in the user’s manual (Section entitled “ Windows Computer 
Software for Computing the Stability of Unreinforced and Reinforced Earth Structures”). 
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Limit Equilibrium Methods Used in the Computer Program 
 
Basic Equations 
Differential and integral equations appearing in the section entitled  “Slepak-Hopkins Limit 
Equilibrium Model” to account for reinforcement forces, which are treated as known external 
concentrated forces, are shown below.  The differential equations of equilibrium are as follows: 
 
 
    

( tan ) ( )x
dH q t x
dx

τ σ θ= − + + −   (154) 

 
 

  

tan ( )y av
dv q h
dx

σ τ θ γ= − − +   (155) 

 
 

  
( ) tan ( )t

x Q
d Hh V H q y y

dx
θ= − + −   (156) 

 
 
 

'' ( ) tanc u
F

σ φτ + −= .  (157) 

   
  
 Integral equations of equilibrium are as follows: 
 
 

 
' '( tan ) (tan ' tan ) 0b b b

a a a

x x x

z ix x x
c u dx F dx F q dx F Tφ σ φ θ− − − + + − =∑∫ ∫ ∫  (158) 

 
 

' '( tan ) tan ( tan ' tan ) ( ) 0b b b

a a a

x x x

y avx x x
c u dx F dx F q h dxφ θ σ φ θ γ− − − + + =∫ ∫ ∫  (159) 

 
 
 

' '( tan )( tan ) ( (tan ' tan ) ( tan ' tan )b b

a a

x x

y xx x
c u y x dx F F dxφ θ σ φ θ σ φ θ − − + + + − − ∫ ∫   

( ) 0b b

a a

x x i
Q z av y i rx x

F y q dx F x h q dx F T yγ− + + =∑∫ ∫  (160) 
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In Equations 154 to 160, reinforcement forces, Ti, are treated here as known external forces applied 
at points between the potential failure surface and geosynthetics sheets: 
 

  
( ) ( );i

i rt x T x xδ= −∑   (161) 
 
 

i i
r rx and y are x-and y-coordinates of points of intersection between an assumed failure surface and 

geosynthetic sheets; 
 
 

( ) :x Delt functionδ − −  
 
 

  

1, 0;
( )

0,if x 0;

if x
x { δ

≠

=
=   (162) 

 
 and     
                              

  

( ) 1x dx
ε

ε

δ
−

=∫ ,  (163) 

 
 
for any 0.ε >  
     After eliminating ,andσ τ differential Equations 154 through 157 can be rewritten: 
 
 
 
 

'

2
'

' ( ) tan1 sec ( ) ( ) tan
tan tan1

y av

x y av

dvc q h udH dvdx q t x q h
dx F dv

F

γ φ
θ γ θ

θ ϕ

+ + + −
− = − + + + +

−
 (164) 

 
 

 
( ) ( ).t

x Q
d Hh V Htan q y y

dx
θ= − + −   (165) 

 
 
Equations 164 and 165 are used in methods formulated by Janbu, Hopkins, and Morgenstern and 
Price’s.   
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Hopkins’ Method 
Hopkins’ method (1986, 1991) involves the same assumption as the original Janbu’s method (1954, 
1957).  It assumes the thrust ratio, 0, and consequently, the values of ht.  Then Equations 164 and 
165 become a system of two equations having two unknown functions, H and V.  As in the original 
Janbu’s method, Hopkins uses an overall horizontal equilibrium equation for the determination of the 
factor of safety: 
 
   

b

a

b

a

x
x

x
ba x

 A dx
  F =

H - + BdxH
∫

∫
  (166) 

 
where  
 

 

( ' ( ) tan ')(1 tan

tan tan '1

2
y av

dVc q h u )dx
dx  A=

F

γ φ θ

θ φ

+ + + − +

−
 (167) 

 

( ) ( ) tanx y av
dvB q t x q h
dx

γ θ= − − + + .  (168) 

 
 
In Equation 166, the factor of safety, F, appears in both parts of the equation; therefore, iterations are 
needed to solve it.  As a first approximation both Janbu and Hopkins, start with an assumption that  
 

 

0( )a b
dv x x x
dx

= ≤ ≤ .  (169) 

 
 
With this assumption, Equation 166 leads to a simple iteration procedure and allows the obtainment 
of an initial approximation for F: 
 

 
0 0

|dv
dx

F F
=

=   (170) 

  
This approximation is used to obtain a more rigorous solution through the following steps: 
 

1. Determine dH
dV

and H from the Equation 164 based on F=F0 and 0dH
dV

= ; 

 

2. Determine V and dV
dx

 from Equation 165; 
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3. Substitute dV
dx

 into Equation 166 to obtain the next approximation of F; 

 
4. Repeat steps 1 through 3 until the difference between subsequent approximations of F 

becomes appropriately small, or the iterative scheme is continued until the condition  
 

| |n+1nF   F ε− ≤ ,  (171) 
 

is satisfied.   The term, ,, is an error selected by the user.  Usually the value in this case 
is 0.001.  

 
Steps 1 through 4 are involved in both the original Janbu’s and Hopkins’ procedures.  However, 
Hopkins uses a  special smoothing technique to obtain  dH/dx and dV/dx in steps 1 and 2.  As shown 
by Hopkins (1986,1991), with this smoothing technique, his method converged for a big variety of 
practical problems for unreinforced earth stability analysis.  It was shown, however, by Slepak and 
Hopkins (1993) that this method is applicable for reinforced earth stability analysis but it has 
convergence problems in some particular cases.    
 
Morgenstern-Price’s Method 
     Similar to the original Morgenstern and Price’s (1965) method, this version for the reinforced case 
uses the basic Equations 164 and 165 and the assumption of Equation 140, which makes the problem 
statically determinate: 
 
   

( )V f x Hλ= .  (172) 
 

With this assumption, Equation 164 takes the form: 
 
 

2{( ' tan ') sec ( )( tan tan ')

( )(tan ' tan )
(tan ' tan ) '( ) }/{tan tan ' (tan ' tan ) ( )}.

y av

dH c u t x F
dx
q h F

F f x H F F f x

φ θ θ φ

γ φ θ
λ φ θ θ φ λ φ θ

= − + − +

+ + +

+ − − +

  (173) 

     
 
As in the original Morgenstern and Price’s method, this equation can be solved with respect to H 
with an initial condition 
 

 
( ) .a aH x H=   (174) 

 
 
By substituting H (x) into Equation 165, the value of M (x) = H (x) ht(x) can be easily determined.  
Finally, equations 141 are used as criteria to obtain the values of λ and F.  
     Three options were initially considered in the program based on different definitions of f (x): 
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( ) 1f x =   (175) 
 

( )( ) sin sina

b a

x xf x half wave
x x

π −= −
−

  (176) 

 
2

( )( ) sin sin .a

b a

x xf x full wave
x x

π −= − − 
  (177) 

 
 
Bishop’s Method 
Bishop’s method is not a statically consistent method and it was classified as a simplified method.  
However, it was proven that this method gives reasonable answers.     
     The original Bishop’s method (for unreinforced analysis) consists of finding the safety factor, F., 
by subsequent approximation based on the following equation: 
 
 

 ,res

dr

MF
M

=   (178) 

 
 
where Mres is a resisting moment with respect to the center of a trial circle; 
 
 

( ' ( ) tan ')
tan tan 'cos 1

y av
res

c q h u x
M

F

γ φ
θ φθ

+ + − ∆
=

 − 
 

∑   (179) 

 
 
 
and Mdr is a driving moment; 
 
 
 

)sin ( .dr av yM h q xθ γ= − + ∆∑   (180) 
 
 
    
 
Ingold (1982) first proposed an extension of the original Bishop’s method to take account for 
reinforcing fabrics.  He proposed the following equation: 
 
 

cos
,res

dr

M T
F

M
θ+

= ∑   (181) 
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where the term cosT θ∑  is an additional resisting moment provided by the fabric.   
     An approach based on Equation 181 does not strictly follow the logic involved in Bishop’s 
method.  Bishop’s method satisfies the overall moment equilibrium condition and the vertical 
equilibrium condition for each slice.  An approach proposed by Ingold (1982) satisfies the overall 
condition moment equilibrium condition but it doesn’t satisfy the vertical equilibrium condition.  To 
overcome this misconception, all of the derivations involved in Bishop’s method should be 
considered in treating reinforcement forces as known external forces.  It is easy to show that this 
approach will lead to an equation different than the one proposed by Ingold, or  
 
 

cos
res

dr

MF
M T θ

=
−∑

    (182) 

 
 
where resM  and Mdr  are described by the same Equations 179 and 180.  The method based on 
Equation 182 will be referred to as Bishop’s incorrect method while the second method based on 
Equation 181 will be referred to as Bishop’s correct method.  Many authors use Bishop’s incorrect 
method following the original work by Ingold (1982), but in a recent publication (Wright and 
Duncan, 1991) the necessity of using Bishop’s correct method is strongly emphasized.  Slepak and 
Hopkins (1993) have shown that the difference between Bishop’s correct and incorrect methods may 
be very large.  Comparing Equations 181 and 182, both methods only yield the same results in two 
special cases: when F=1 or when T=0 (unreinforced case).       
 
Perturbation Methods—Slepak and Hopkins’ Model   
In contrast to the method of slices, perturbation methods use overall equilibrium equations in an 
integral form (see section entitled “ Limit equilibrium methods based on formulation 2”).  In the 
original perturbation method proposed by Raulin et al (1974), basic approximation for the normal 
stress distribution is chosen in the form of Equation 143.  A modification of this approximation for 
reinforced analyses was made by Gourc et al (1989):   
 
 

2( ) ( ) cos sin cos ( )sin coso av y xx h q q t xσ γ θ θ θ θ θ= + + −   (183) 
                

 
 
where t (x) is described by Equation 161.   
     As shown by Raulin et al (1974), all three modifications expressed by Equations 145, 146, and 
147 of the perturbation method with the same basic function, Equation 143, yield essentially the 
same results.  Therefore, the authors considered only one version decribed by Equation 145.  Instead 
two other versions were introduced.  Those versions consider normal stress distribution obtained by 
Hopkins’ (1986, 1991) method for the unreinforced case.  It was mentioned in the section, “ Hopkins 
method” above, that Hopkins’ method provided reasonable answers in unreinforced earth stability 
analysis and therefore the normal distribution obtained by this method may be a good initial 
approximation for perturbation methods.  The authors in the earlier works (1993, 1995) considered 
three perturbation methods, as follows: 
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Method 1.  (After Gourc et al, 1989). 
 
 

( tan ) oσ λ µ θ σ= +   (184) 
 

 
Where  oσ  is described by Equation 183 
 
Method 2.  
 

 
* ( )sin cost xσ λσ µ θ θ= −   (185) 

 
 
where *σ  is the normal stress distribution in a corresponding unreinforced problem obtained 
according to the Hopkins’ method (1986, 1991). 
 
Method 3.  
 

 
*( tan )( ( )sin cos )t xσ λ µ θ σ θ θ= + −   (186) 

 
where  *σ  is defined in the same way as in Method 2.  On substituting any of expressions 184,185, 
or 186 into the system of equilibrium Equations 158 to 160, the following system of nonlinear 
algebraic equations with respect to , , :and Fλ µ  
 
 

11 12 13 14 15 1

21 22 23 24 25 2

31 32 33 34 35 3

0
0
0.

a a a F a F a F b
a a a F a F a F b
a a a F a F a F b

λ µ λ µ
λ µ λ µ
λ µ λ µ

+ + + + − =
+ + + + − =
+ + + + − =

 (187) 

 
 
Expressions for ij ia and b for each of the above mentioned methods are given elsewhere (see Slepak 
and Hopkins, 1993 in an Appendix).  The system 187 is solved by the Newton-Raphson method. 
     In the study performed by Slepak and Hopkins (1993), applications of the above methods to 
reinforced earth stability analyses were performed.  Numerous published stability problems involving 
tensile reinforcement were performed using the perturbation method and the three different 
assumptions expressed by Equations 184 to 186.  One published example (a reinforced slope) was 
taken from Tensar Technical Note (1986a).  For comparison, results published by Wright and 
Duncan (11991) for the same example were compared to results using the three different perturbation 
approaches.  Wright and Duncan solved the problem using stability methods by Spencer, Bishop 
(correct approach), Force Equilibrium, and Log Spiral.  In addition to the perturbation methods, the 
authors solved the problem using Bishop’s correct and incorrect methods, and Hopkins’ method.  All 
methods gave almost identical results (F=1.44-1.46) except the Force Equilibrium method (F=1.30) 
and Bishop’s incorrect method (F=1.36).  
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     Several generic reinforced slopes of different degrees (300,450, 600, and 800) were performed 
using Morgenstern and Price’s method, Hopkins’ method, Bishop’s correct and incorrect methods, 
and the perturbation methods using three different approaches.  In all cases statically consistent 
methods gave reasonable thrust ratios and the difference between answers were practically 
insignificant.  Morgenstern and Price’s method was found to be very sensitive to initial 
approximations of 8 and F.  Depending on how close those approximations are to the “true” answer, 
this method may or may not converge.  Bishop’s incorrect methods gave lower answers than the 
other methods.  Depending on the number of reinforcement sheets, the differences in factors of safety 
provided by Bishop’s correct and incorrect methods varied from 0 to 47 % where 0% represented the 
case when there were no intersections between a selected failure surface and reinforcement sheets.  
Occasionally, the Hopkins’s method for the reinforcement case did not converge.                       
     Other published cases include a load test of a large –scale geotextile retaining wall (Billilard and 
Wu, 1991), RMC load test of a large scale model geogrids-reinforced wall (Bathurst et al, 1988).  In 
both cases, the perturbation, Bishop’s correct, and Hopkins’ methods yielded results that agreed with 
failure conditions, that is the factor of safety were very close to 1.0). 
     Slepak and Hopkins (1993) also examined the stability of reinforced embankments on soft clay 
foundations.  Three published examples were analyzed and included examples published by Wright 
and Duncan (1991), Rowe et al  (1984), and Hadj-Hamou et al (1990).  These cases were examined 
using admissibility criterion, Equation 128, or: 0 1.η≤ ≤  Detailed analysis of these examples were 
made by Slepak and Hopkins using the admissibility criterion, Equation 128.  The analysis were 
performed by using the following defined value: 
 
 

*( )b

a

x

x

b a

x dx

x x

η
ε =

−
∫

   (188) 

 
 
where 
 
 
  

0 10

1 0 1

if,
*

, if either or

η

η η
η

≤ ≤
={

≺ ;
 (189) 

 
 
 
For an admissible thrust ratio, the value of 0;ε =  a thrust ratio that violates the admissibility 
criterion at all points 1a bx( x x x ), .ε≤ ≤ =  For all intermediate cases, 0 1.ε≤ ≤  In the case of a 
reinforced embankment on a soft foundation, Slepak and Hopkins (1993) concluded that different 
limit equilibrium methods may lead to essentially different values of factors of safety, especially in 
the case of noncircular slip surfaces.  Using the admissibility criterion given by equations 93 and 94, 
it was shown that in both circular and noncircular analyses only the Perturbation Method 3 proposed 
in their report appeared to be statically consistent and physically admissible.  Perturbation Method 3 
was recommended for practical use and as a universal limit equilibrium method.  Moreover, the 
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method works reasonably in the case of internal stability of reinforced slopes and retaining walls as 
well as reinforced slopes in the case of a reinforced embankment on a soft foundation involving deep 
failure surfaces.  The method does not have any restrictions to the kind of failure surface and, in all 
cases, rapid convergences were observed by the authors.   The authors also noted that Bishop’s 
method and all statically consistent methods, such as Hopkins’ method, Morgenstern and Price’s 
method, the original Perturbation method, and new Perturbation methods, as proposed by the authors, 
provide reasonable factors of safety for internal analyses of reinforced slopes and retaining walls.  
However, Hopkins’ method on occasions does not converge and Morgenstern and Price’s method 
appears very sensitive to the initial approximations of λ and F parameters as well as the function f 
(x). 
     Based on the findings of Slepak and Hopkins, three different stability methods were included in 
the computer software for analyzing reinforced slopes and retaining walls, and the extension of the 
software to include the bearing capacity of reinforced flexible pavements.  Perturbation Method 3, 
Hopkins’ method, and Bishop’s correct method were included in the newly developed Windows 
software.  The Hopkins’ method was included in the software since this method provides the first   
estimate of normal stresses that are used in the Perturbation method 3.  Also, the Hopkins method can 
also be used to analyze all classes of stability problems (circular and noncircular) that do not involve 
reinforcement.  In the software, the user is not allowed to use the Hopkins’ method in solving 
problems involving reinforcement.  Bishop’s correct method was included for comparative purposes.  
However, the user should be cautious in using this approach for solving problems involving deep 
failures.  The Perturbation method was recommended for solving all classes of problems, including 
the analyses of flexible pavements reinforced with tensile elements. 

 
 

DEFINING SHEAR STRENGTH PARAMETERS OF FLEXIBLE 
PAVEMENT LAYERS 

 
 

Shear strength Parameters of 
Asphalt Cores 
 
Because shear strength of asphalt 
materials varies with temperature 
and temperatures within the asphalt 
concrete materials vary with 
pavement depth, the shear strength 
varies with pavement depth 
(Hopkins, 1991; Hopkins and 
Beckham 1995). To examine the 
variation of shear strength with 
temperature, unconsolidated-
undrained triaxial compression 
tests were performed on asphalt 
core specimens obtained from an 
asphalt concrete pavement site in 
Kentucky.  As a means of varying 
the temperature of the asphalt 
specimens, coiled, copper tubing 

Asphalt

Coiled 
Copper 
Tubing

Asphalt 
Core 
Specimen

To Water Bath

From Water Bath

Figure 21.  Close-up view of triaxial chamber, triaxial
specimen of asphalt core, and copper tubing. 
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(Figure 21) was fitted around each core specimen in the triaxial chamber.  The copper tubing was 
connected to a temperature-controlled, water bath. Water was circulated from the water bath through 
the copper coils and back to the 
water bath. A close-up view of the 
triaxial chamber is shown in Figure 
22.  After several hours, the 
temperature of the water in the 
triaxial chamber (and asphalt core 
specimen) becomes the same as the 
circulating water from the water 
bath.   
     A minimum of three specimens 
was tested at a selected 
temperature.  Selected 
temperatures ranged from 25 to 600 
C.  Variations of the total stress 
parameters, angle of internal 
friction, N, and cohesion, c, with 
temperature are shown in Figures 
23and 24 respectively.  The value 
of N increases from 26 to 44 
degrees as the temperature 
increases from 250 to 600 C.  The value of c decreases from about 386 to 51 kPa.  
 
Shear Strength Parameters of Aggregate Base Materials 
 
Shear strength parameters, φ  and c, of the base material (crushed limestone) were estimated to be 43 
degrees and zero, respectively.  This assumption was based on actual triaxial test results obtained 
from testing similar compacted 
aggregates.  
     
Shear Strength of Soil 
Subgrades 
 
The shear strength of a soil 
subgrade may be expressed in 
terms of the effective stress 
parameters, ' and c'φ  or the 
undrained shear strength, Su.  To 
use the effective stress 
parameters requires knowledge of 
the pore pressures in the soil 
subgrade.   Although pore 
pressure measurements could be 
performed in situ to obtain this 
information, the effort would 
require extensile efforts.  This 
certainly could be the subject of a 

Water
Bath

Loading 
Frame

Circulating
Tubing

Specimen

Timer

Figure 22.  Triaxial equipment for testing asphalt pavement
cores, aggregates, and soil subgrades. 
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future research study and is beyond the scope of this research effort.  However, if the pore pressure 
behavior is known, than the Slepak-Hopkins and Hopkins models could be used to perform an 
effective stress analysis.  The 
pore pressures acting in the soil 
subgrade under wheel loadings 
could also be estimated from 
triaxial tests, but with a great deal 
of uncertainty.  Because traffic 
loadings are almost 
instantaneous, the analysis could 
be performed using the undrained 
shear strength of the soil 
subgrades, or assuming a total 
stress analysis.  In this study this 
approach was adopted.  
Moreover, the undrained shear 
strength of the subgrade during 
the life of the pavement is largely 
unknown.  However, the CBR 
bearing strength of the compacted 
soil is usually available, or it can 
be measured in situ.  
Consequently, Hopkins (1991) developed a relationship between undrained shear strength and CBR, 
or   
 

        0 9792 173 .
uS . CBR .=    (190) 

 
 

MULTIPURPOSE LIMIT EQUILIBRIUM COMPUTER PROGAM 
GENERAL GUIDE TO DATA ENTRY 

 
Originally, the computer program developed by Hopkins (1986, 1991) was written in the Fortran 
language.  Later Slepak and Hopkins (1993 and 1995) revised that software and included other 
stability methods.  Stability models by Morgenstern-Price, Bishop, Hopkins, and Slepak-Hopkins 
were included in the revised Fortran version.  However, to make the software “user friendly” the 
software was revised again in this study.   To avoid rewriting the different model equations 
(programmed in Fortran), PowerBuilder 8.0® (Synbase 1999a, b, and c) was used to develop 
graphical user interfaces (GUIs).  Those Graphical user interfaces were coupled with the old Fortran 
program.  This approach avoided also the need for testing the software since many hundreds of 
comparisons have made in past studies.  This approach also essentially eliminated the need to 
“debug” the Fortran software.  Basic data entry and output are described below. 
 
Main Menu 
 
The stability models developed by Hopkins (1986, 1991) and Slepak and Hopkins (1993, 1995, and 
1996) may be used in two different approaches.  In the first approach the, the multipurpose limit 
equilibrium computer program can be used as a standalone computer program.  Alternately, the 
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windows version of the computer 
program has been stored in the 
Kentucky Geotechnical Database 
(2004).  This database is in an intranet 
system developed for engineers of the 
Kentucky Transportation Cabinet by 
Hopkins et al (2004).  The computer 
program is stored on a Cabinet server in 
Frankfort, Kentucky.  However, central 
offices and all twelve-highway district 
offices have access to the centrally 
located server.  By using the server 
version, changes and updates can be 
made easily and conveniently.   The 
main menu of the Kentucky 
Geotechnical database is shown in 
Figure 25.  By clicking on “Engineering 
Applications” and “KTCSLOPE,” the 
main menu of the computer program 
appears as shown in Figure 26.  The 
same menu appears in the stand-alone version of the program.  In addition to solving bearing 
capacity problems involving multilayered medium, which may be reinforced with tensile elements or 
unreinforced, the multipurpose program also handles the stability analyses of many different types 
earth structures.    
     The main menu of the stability 
program is divided into three parts that 
are labeled 
 

• Stability Analysis 
• Slope Design 
• Wall design. 

 
When the button, “Stability analysis” is 
clicked, the GUI screen in Figure 27 
appears.  This screen is divided into a 
menu that displays the following 
options: 
 

• Get Input Data File 
• Edit Input Data File  
• Run Analysis  
• Browse result File 
• Go Back. 

 
If the button containing “Get Input Data 
File” is selected, then the GUI screen labeled “Select a File” appears.  The user may select a previous 
file containing a stability problem.  After a previous file is selected, the user may click the button 
“Edit Input Data File” and the GUI screen shown in Figure 27 appears.  The data may be edited to 

Figure 25.  Method for accessing the Bearing Capacity
program in the Kentucky Geotechnical Database. 

Figure 26.  Main menu of the KTC computer software
for calculating the stability of earth structures 
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perform a new analysis or to run the stored problem.  In this case, the stored problem is clicked from 
the file and the button “Edit Input Data File “ is clicked.  When this action is performed the GUI 
screen shown in Figure 27 appears, which contains data for the stored example.  If the user prefers a 
blank screen for a new problem, then the button  “Edit Input Data File” is clicked. A small screen 
appears asking the user if a file is to be retrieved.  If the user clicks “no”, then the screen in Figure 28 
appears blank without any data.  The user may enter a completely new set of data. 
     The “problem Control “ screen In Figure 28 contains a main menu for entering data.  This menu 
includes the following: 
 

• Problem Control 
• Ground Line 
• Soil Property 
• Boundary Lines 
• Water 
• Thrust Line 
• Vertical Loads 
• End Forces 
• Failure Surface 
• Reinforcement 
• Save 
• Save As 
• Execute 
• See Results 
• Print section View  
• Go Back.   

 
Each graphical user interface associated 
with each item above is described in 
detail below.    
 
Problem Control 
 
The problem control graphical user interface, Figure 28, contains a number of boxes for entering 
information that must be provided by the user.  Whenever a button on the main menu at the right of 
that figure is clicked an icon appears to the left of that button.  This indicates that this GUI screen has 
been opened at least once.  If the “folder” icon appears to the right of the clicked button, then the 
GUI screen associated with the clicked icon is presently appearing.  Detailed descriptions of the 
boxes on the “Problem Control” screen are presented as follow: 
 

• Problem Identification 
     The user may enter a description of the particular type of stability problem and a date in 
this box. 

 
• Reinforcement 
           A drop down box is provided for the user to click either “Yes” or “No.”  (Later the user 

will supply property attributes and locations of the tensile reinforcement elements.  In some 
cases, the program will generate locations and other data.)  

Figure 27.  Selecting a stored stability problem. 
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• Thrust Line 
     This imaginary line, which is defined by the user using x-and y-coordinates, locates the 
positions of the side forces on each slice.  (Normally, this feature is only used in rare cases 
and usually in most analyses is not required.) 

 
• Thrust Ratio, 0 

     See Figure 4, or 18.  The thrust ratio is defined by Equation 131, or it is the ratio of the 
difference, yt-y, to the height of the slice, ht, where y t is the y-coordinate of the thrust line and 
y is the y-coordinate of the ground line.  Normally, a value of 0.33 is assumed in the analysis, 
although any value between 0 and 1 may be specified.  

 
•   Method 
          Three limit equilibrium stability methods are available in this version of the computer 

program.  These are as follows: 
 

� Modified Perturbation 
� Bishops 
� Hopkins 

Figure 28.  Main GUI displaying data for a selected stored stability problem example and a
menu of options for editing the stored data.  The screen shown is the “Problem Control”
GUI screen. 
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�  Failure Surface 
In this version of the computer program, the failure surface may be specified in three 
different ways.  These include:  
 

� Circular 
A circular shear surface may be specified for each of the three stability 

methods—Modified Perturbation, Bishops, and Hopkins. 
 
� Noncircular 

     The computer does not allow specifying a noncircular failure surface for 
the Bishop stability model since this method can be used only for circular 
failure surfaces.    
 

� Spiral 
The log spiral shape shown in Figure 14, or 16, can be specified with this 
option.  However, this shape cannot be used with the Bishop model.  The 
spiral shape can be used in the Perturbation and Hopkins’ methods in all cases 
not involving tensile elements.  When tensile element elements are involved 
in the stability problem, only the Perturbation method can be used.  
Moreover, both circular and noncircular failure surfaces may be used.        

 
• Pullout Resistance will be Calculated by Assuming 
          There are two options to calculate reinforcement forces in the program.  These options are 

exercised by using the dropdown box shown in Figure xx.  The options are: 
 

� Fixed Reinforcement End, or 
� Free Reinforcement End. 

 
If  “Fixed Reinforcement End ” is selected, then the reinforcement forces are calculated 
based on Equation 147, but reinforcement sheets are considered fixed at the right ends, i. e. 

a rt T=  in Equation 147, or the pullout resistance of a fabric in an active zone is equal to the 
long-term tensile strength of a fabric.  When the option, “Free Reinforcement End,” is 
selected the reinforcement force is calculated according to Equation 147. 
 

�   Unit Weight of Water 
          The units of all data entered into the program must be consistent.  The numerical value and 

units specified for the unit weight of water control the units of all other input data.  If the user 
does not specify a value for the unit weight of water, then the computer program assumes a 
value of 62.4 pounds per cubic foot (pcf).  Therefore, in this case, length must be in feet and 
force and weight must be in pounds to be consistent with the units of the unit weight of 
water.  For example, all coordinate data must be in feet and such value, as the cohesion of a 
soil would have the units of pounds per square foot.  If units other than those assumed by the 
computer program are used, then the user must specify a numerical value of the unit weight 
of water consistent with the intended units.  For instance, if the unit weight of pore fluid is 
specified as 1.0, then the consistent set of metric units would be metric tons and meters, 
grams and centimeters (not kilograms and centimeters).  If a value of the unit weight of the 
pore fluid other than fresh water is desired, than the desired unit weight of the pore fluid 



T Hopkins, L Sun, and M Slepak--- University of Kentucky Transportation Center, College of Engineering 
 

 

65

 

should be specified.  In the drop down box in Figure 28, the unit weight of water may be 
specified in four different ways, or   

 
� 0.0624 Kips/ft3  
� 62.4 Lbs/ft3 
� 9.8 Kn/m3 
� Value and units supplied by user. 

 
• Seismic Coefficient  
       Earthquake loading is simulated using a pseudo-statical method.  The seismic force is 

assumed to act horizontal on each slide in the direction of the failure (away from the slope or 
bearing capacity problem.  The force on each slice is computed from  

 
 

i
i i

aWF W
g

ψ= = ) (191) 

 
 where Fi  = horizontal seismic force acting on slice i, 
   
  Wi = weight of slice i,  
  g  = acceleration of gravity, 
   a = horizontal earthquake acceleration, and  
  ψ = seismic coefficient in the region in which the earth structure is located.  
                
•   Seismic Ratio 

Seismic ratio (Hq) is the ratio of the distance Sq to the height of the slice Zq , or         
 

 
q

q
q

S
H

Z
=   (192)           

 
where  

 Sq  = the distance between the elevation of the point of application, Yq, of the  
              seismic force and the elevation of the shear surface, Yf (Sq = Yq-Yf),  

     Zq = the distance between the elevation of the groundline surface, Ys, and the  
           Elevation of the  shear surface (Zq = Ys-Yf).    
 
     Seismic loading is executed in the program by inserting values of the Seismic Coefficient 
and Seismic Ratio.  By specifying a value of Seismic Ratio (HQ), the user may locate the 
earthquake forces at any position of the slices.  However, the earthquake forces are generally 
located at the midpoints of the slices; a value of 0.5 is usually inserted for the Seismic Ratio. 

 
•   Number of Slices 

     The maximum number of slices that may be specified by the user is 598.  If the user fails 
to specify a number of slices, then the computer program assumes a value of 76.  When the 
user specifies the number of slices, the specified value MUST be an EVEN integer.   The 
computer program divides each trial mass into the number of slices specified by the user.  It 
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is recommended that no fewer slices than 76 be used.  It is good practice to check a given 
problem using different slices to determine the effect of the number of slices on the solution.   

 
•   Tension Crack 

     In cases where embankments are constructed on soft clay foundations, stresses in the 
upper reaches of the potential failure mass may be tensile.  A problem arises in the design of 
embankments of soft foundations because it is uncertain as to what portions of the shear 
strength of the embankment is mobilized and may be relied on for stability.  Uncertainties 
arise in the stability analysis because of differences in the stress-strain behaviors of the 
embankment and soft foundations soils.  Embankments normally will be constructed of 
compacted soils that will be stiff and overconsolidated.  The peak strength of the compacted 
embankment soils occurs at a relatively small strain.  At this stage, only a small portion of the 
shear strength of the foundation soils may be mobilized.  This situation leads to the 
development of tensile stresses in the upper zone of the embankment.  Since soils cannot 
sustain tensile stresses, at least for a prolonged period of time, a tension crack may develop in 
the embankment.  If the embankment cracks, a smaller portion of the shear strength of the 
embankment may contribute to overall stability.  Therefore, the use of the peak strength of 
the embankment in the stability analysis may be under conservative if the embankment is 
prone to crack.  Assuming no shear strength of the embankment soils may be over 
conservative since overturning moments are too large.  For this later case, the safety factor is 
too low.   
     Two options are available for performing stability problems involving potential tension 
cracks. If the depth of tension crack is known, or estimated, then the user can input the 
tension crack depth.   
     In the second option, the user may allow the computer program to obtain a compatible 
value of tension crack and factor of safety.  As shown elsewhere (Lambe, 1969; Chowdhury, 
1978), the depth of tension crack may be expressed as (in terms of effective stress)  
 
 

1
22 ' 1 sin '

(1 ) 1 sin 't t

cz φ
γ γ φ

    + =     − −     

 (193) 

 
where  
 z = depth of tension crack; 
 c’ = effective stress parameter, cohesion; 
 (t = total unit weight; 
 ru= pore pressure ratio; and  
  N’ = effective stress parameter, angle of internal friction. 
 
 
Equation 193 allows the maximum depth of the tension crack to be computed at failure 
(F=1.0) in terms of effective stress or total stress.  However, for cases other than failure, that 
is, when the factor of safety of safety is greater than one, the tension crack depth may be 
computed using the mobilized strength parameters: Nf = tanN/F and cf = c’/F.  Substituting 
the mobilized strength parameters into equation 193, the depth of the tension crack may be 
expressed as  
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. (194) 

             
      According to Equation 194, the depth of the tension crack is a function of F, (t, cf, ru, and Nf.  

However, the factor of safety, and therefore, the mobilized depth of tension crack are 
unknown (except for the case of failure when F = 1.0).  To solve this problem when the factor 
of safety is greater than one and for a given shear surface, that is, to obtain the depth of the 
crack compatible with the factor of safety, iteration may be performed using Equation 194.  
The iteration is performed on Z and F and (t , cf, ru, and Nf  are constant. 

          To start the iteration, an initial factor of safety must be assumed.  A reasonable initial 
estimate of the factor safety (F0) may be obtained by solving the problem assuming no 
tension crack.  Substituting F0 into Equation 194 and solving yields the first estimate of the 
depth of tension crack (Z0).  Using Z0, a new value of the safety factor (F), is computed.  The 
iteration is continued until 

 
 

1 ,n nZ Z ε−− <   (195) 
 

 
where ε = a selected numerical error.  The numerical value of ε in the computer is 0.001.  A 
detailed treatment of the tension crack problem, as used in the computer program, is given 
elsewhere (Hopkins, 1986) and is beyond the scope of this report.  This tension crack scheme 
was not included in this version of the program.  It will be included in future versions.     

 
�  Tension Crack Depth Filled with Water 

This value is the depth of water in the tension crack.  In the program, this horizontal force is 
automatically computed and is treated as a boundary force. 

 
Ground Line 
 
The method used in the computer program to describe the geometry of a slope, bearing capacity 
problem, or wall and the arrangement of the soil types comprising the stability problem is illustrated 
below.  The computer program can solve only two-dimensional problems.  All geometry of a slope or 
bearing medium is defined by x- and y- coordinates and line segments.    Customarily, the slope, or 
wall, faces to the right.  However, they may face in either direction.  The x-coordinate direction must 
be horizontal and, normally, increases positively from left to right.  However, negative x-coordinates 
may be used.  The y-coordinate direction is vertical and normally increases positively from bottom to 
top.  However, negative y-coordinates may be used.  Conventionally, the origin of the coordinate 
system is located to the left and below the slope.  
     Straight-line segments are used to approximate the entire cross section.  This applies to the ground 
line surface, layer boundary interfaces, water table surface or piezometric lines, shear surface, and 
thrust lines.  The line segments are defined by x- and y-coordinates.  The uppermost line segments in 
the cross section are identified in the computer program as the ground line surface.  Access to a 
graphical user interfaces for entering ground-line coordinates is executed by clicking the button 
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identified as “Ground Line” in Figure 28.  The GUI shown in figure 29 appears.  The menu 
appearing on the right-hand side of Figure 29 appears on each major GUI screen.   The icon situated 
to the right of the menu in Figure 29 appears when a particular GUI screen is opened.  This icon lets 
the user know which current screen is open. The icon on the left side of the menu lets the user know 
that data has been entered for a particular parameter.  The x- and y-coordinates of the ground line are 
entered on this screen.  As shown in this figure, when the button labeled “Add Row” is clicked new 
boxes appear for entering additional x- and y-coordinates.  The user may also insert a row by clicking 
the button “Insert Row” or a row may be deleted by clicking “Delete Row.”  Those buttons facilitate 
the editing of data entries.  As ground line and boundary line x-and y-coordinates are entered, a 
graphical view of the entered geometry appears in the lower left-hand corner of Figure 29.       
 
Soil Property 
 
Shear strength of each soil layer is defined in terms of the Mohr-Coulomb-Terzaghi strength 
criterion,  
 

' ( ) tanc uτ σ φ= + −   
 
where  c’ = cohesion of the soil, 

N’ = angle of internal friction,F = total normal stress acting on the shear surface , and  
u = pore water pressure acting on the shear surface.  
 

When the strength of a particular layer is expressed in terms of total stress parameters, the values of 
N and c are total stress shear strength parameters.  Pore pressures within the particular layers are 
specified as zero.  The values, c’, N,’ (, and u, used for each slice are values applied at the midpoint 

 
Figure 29.  GUI for entering x- and y- ground-line coordinates. 
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of the base of each slice.  If an effective stress analysis is specified, values of c’ and N’ are effective 
stress strength parameters and an appropriate method of representing the pore pressures is selected as 
described below.   
     Properties of each layer of soil are entered on the GUI screen shown in Figure 30.  This GUI 
screen appears when the button labeled “Soil Property” is clicked.  Properties are as follows: 
 

•   Layer (Number)  
The soil layer number increases with depth.  In the example in Figure 30 (See also 
Figure 5), the topmost layer is number 1 while the bottom most layer is 8. 
 

•   Cohesion 
Cohesion is the effective or total stress parameter; c’ of each soil layer or the undrained   
shear strength parameter, Su. 
 

•   Friction Angle 
     Effective or total stress parameter, angle of internal friction, N,’ of each soil layer.  

 
•   Unit Weight 
    Total unit weight of each soil layer, (; 

 
•   Pore Pressure Factor 

Pore pressures must be described for all soils in which the effective stress parameters, N’ 
and c,’ are used to obtain the effective normal stress acting at the bases of slices.  Pore 
pressure problems, according to Bishop and Bjerrum (1969) may be divided into two 
main classes: 

 
CLASS 1.  Pore pressure is an independent variable controlled by the magnitude of 
the stresses acting in the soil or tending to lead to instability.  Problems of this type 
may involve the rapid construction in or excavation of low-permeability soils. 
 
CLASS 2.  Pore pressure is an independent variable and does not depend on the 
magnitude of the total stresses acting on the soil.  In this case, pore pressures are 
controlled by the groundwater level or by the flow pattern of the groundwater.  

      
     There are four methods, or options, in the computer program that handle the two classes of 
problems.  Clicking inside the box (for any layer) labeled “Pore Pressure Type” opens a drop down 
box, as shown in Figure 30.  The user has four choices, or options.  These are  
 

• By Pore Pressure Ratio (<1.0), 
• By a Piezometric Line, 
• By an a Infinitely Sloping Groundwater, 
• By Assuming the Groundwater. 

   
In the computer program, each soil type or layer may have only one value of ru.  When Method 1 is 
used to define the pore pressures in a given layer, the value of ru must be some real number less than 
1.0.  This value is entered directly on the “Soil Properties” GUI screen, Figure 31.     These methods 
are described as follows: 
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Option 1. 
     Pore pressure in a given soil layer may be defined by a pore pressure ratio, ru.  This dimensionless 
parameter is the ratio of the pore pressure, u, to the vertical stress, Fv,

 of soil above the element 
considered, or 
 

u
v t s

u ur
hσ γ

= =   (196)       

 
 
where  (t  = total unit weight of soil above the element and  
  hs = height of soil above the element.   
   
The ru ratio was first used by Daehn and Hilt (1951) as a means of expressing the results of the 
stability analysis of four earth dams.  Bishop (1955) showed that, for both classes of problems, the 
pore-pressure ratio, the relationship between the factor of safety and ru is almost linear.  Later work, 
by Bishop and Morgenstern (1960) showed that both classes of problems, the pore pressure ratio is a 
very consistent means of expressing the influence of pore pressure on stability. 
     For Class 1 problems, the ru ratio is obtained either from field measurements of pore pressures or 
estimates from triaxial tests and consolidation theory as described by Bishop and Bjerrum (1969) and  

Figure 30.  Data entry for defining cohesion, the friction angle, unit weight, and
types of pore pressures in each soil layer. 
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Bishop and Henkel (1957).  In the latter case, an estimate of the stress distribution within the soil 
must be made.  In Class 2 problems, the ru value is obtained from a flow net; it is expressed as an 
average value.  Bishop and Morgenstern (1960) have given details of this technique.  
 
Option 2.  
Pore pressure in a given layer may be defined by piezometric lines.  This method is convenient to use 
when piezometers are used to obtain pore pressures.  However, both Class 1 and 2 problems maybe 
solved using this method.  Pore pressures are obtained as described in Method 1.  Each soil layer may 
have only one piezometric line.  Straight-line segments and x- and y-coordinates approximate each 
piezometric level.  See Figure 5 and associated discussion.  
     When the trial shear surface passes through a soil layer where the pore pressures are defined by 
piezometric coordinates, the pore pressure foe each slice of the unstable mass is calculated by 
multiplying the vertical distance between the shear surface of the slice and the appropriate 
piezometric line by the unit weight of water.  The pore pressure (ui) at the base of slice i is equal to 
the vertical distance (hw) times the unit weight of water ((w), or   
 

.i w wu hγ=  (197) 
      

(Pore pressure ratio, 
ru --Layer 6 -DGA)

(Piezometric lines 
specified for layers 7 
and 8—soil layers)

Figure 31.  Data entry for defining cohesion, the friction angle, unit weight, and type of
pore pressure in each soil layer. 
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Both Options 1 and 2 may be intermixed.  For example, pore pressures in one soil layer may be 
defined by a ru-value while pore pressures in another layer may be defined using x- and y-coordinates  
 
Option 3.    
Pore pressures may be defined using an infinitely sloping groundwater table or phreatic surface.  In 
this option, the groundwater level is approximated by x- and y-coordinates defining straight- line 
segments.  Pore pressure (ui), at the base of each slice, is computed from  
 
 

2cosi p w i wu h h jγ γ= =  (198) 
 
where  hp  = pressure head; 
 (w = unit weight of water; 
  j   =  gradient, or angle between a horizontal line and the groundwater line, and  

hi  =  vertical distance between the surface of the ground-water table and the shear  
         surface. 
 

     Pore pressures for the flow net may be computed using Option 3. This method applies to class 2 
problems where pore pressures are independent of the magnitude of the total stresses acting in the 
soil.  To execute this option, it is only necessary to click the button, “By an Infinitely Sloping 
Groundwater,” of the first soil layer.  All other values of ru are left blank, or set equal to zero.  The 
coordinates of the water table are entered under the button labeled “Water.”  When Option 3 is used, 
Options 1 and 2 cannot be used. 
 
Option 4.  
 Pore pressures may be defined by assuming or specifying a groundwater table.  This method 
primarily applies to Class 2 problems.  This method is executed by clicking on the button labeled 
“By Assuming the Groundwater” of the first soil layer.  The groundwater table is described by x- and 
y-coordinates defining straight-line segments.  All other values of ru are left blank, or set equal to 
zero.  Pore pressures (ui) acting at a point on the base of each slice are computed from the equation 
 

i i wu h γ=  (199) 
 
 
where hi  = vertical head of water between the base of slice and groundwater table at the center of the  
slice.  When option 4 is used, options 1 and 2 cannot be used.      
      
     Figure 31 illustrates using a mix of Options 1 and 2.  A pore pressure ratio of 0.20 was specified 
for layer 6, which is the dense graded aggregate base (DGA) of the flexible pavement.  Material of 
this type may have sufficient fine materials to cause a buildup of pore pressure under large wheel 
loadings.  In layers 7 and 8–soil layers—piezometric lines were used to define the pore pressures in 
those layers.  Effective stress parameters were used to define the shear strength in layers 6, 7, and 8.  
The factor of safety for this particular problem was 0.99 or failure. 
      
Boundary Lines 
 
After the shear strength parameters, unit weight, and the pore pressure types have been entered for 
each layer, the x- and y- coordinates of the boundary lines, or the layer interfaces, are entered as 
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shown in Figure 32.  The ground line segments and all layer line segments must be horizontal for 
bearing capacity problems.  However, in all other stability problems this condition does not apply.  In 
all stability problems, the starting x-coordinates of the ground line, all interfaces, groundwater table, 
all piezometric coordinates, and thrust line must be equal.  Also, the ending x-coordinates of those 
lines must be equal.  As x- and y- coordinates of the ground line, layer interfaces, thrust line (when 
specified manually), groundwater table, or piezometric lines, and external point and distributed loads 
are entered, a graph of the points is created as shown in the bottom left of each GUI screen.  By 
creating the graph as the user enters geometric data entry errors are viewed and immediately can be 
corrected.  If the user needs to view a larger plot of the cross section, then the button labeled “See 
Big Graph” is clicked.   All geometric data is exhibited in a large view.  To return to the main menu, 
the user clicks the button “Go Back.” 
 
Water 
 
As shown by the example in Figure 31, the user specified piezometric coordinates as a means of 
defining the pore pressures in layers 7 and 8.  To enter the x- and y- coordinates of the piezometric 
lines, the button labeled “Water” is clicked and the GUI screen shown in Figure 33 appears.  The x-
and y-coordinates of the piezometric lines are entered in the appropriate boxes created by clicking the 
button  “Add Row.”   Other editing buttons include “Insert Row” and Delete Row.”      

Figure 32.  Data entry for the x- and y- coordinates of layer boundaries. 
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Thrust Line 
 
When the user selects “Compute” in the dropdown box identified as “Thrust Line” in the Problem 
Control GUI screen (Figure 28) the computer program automatically computes the locations of the 
interslice forces, or the x- and y-coordinates of the trust line.  To activate this case, a value of thrust 
ratio (usually 0.33) must be entered, as shown in Figure 28.  However, if “By Input” is selected then 
the user must enter all x- and y- thrust line coordinates for all slices.  The x-and y-coordinates of the 
interslice force locations are entered in the GUI screen shown in figure 34. 
 
Vertical Loads 
 
Vertical Loads are entered as shown in Figure 35.  The tire stress used in this example was 100 psi. 
Dual wheel tires were assumed in the example.  Because the unit weight of water used in the example  
was specified as 62.4 lb/ft3 length measurements are in feet.  The external vertical tire stress is 
converted to an external distributed load, or  
 
 

2

2 2

100 144 14, 400
yi

lb in lbq x x ft
in ft ft

 
∆ = ∆ = 

 
. (200) 

 
where qyi is equal to the distributed vertical external forces (psi).  In the computer program, the loads 
are assumed constant between two consequent x-coordinates, xi and x i+1 and equal to qyi.   The 

(Piezometric
coordinates
For layer 7—DGA)

(Piezometric coordinates 
For layer 8—Clay)

Figure 33.  Entering x-and y-coordinates of piezometric coordinates. 
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sequence of entering the x-and q-coordinates, for this example, is illustrated in Figure 35 and in a 
graphical display of the 
coordinates in Figure 36.  
Also, the reader is referred 
to Figures 10 and 11 and 
the associated discussion.  
As shown in this example, 
the factor of safety 
(without reinforcement) is 
1.137.  A graphical 
display of the coordinates 
is shown in Figure 36.   
 
End Boundary Loads    
 
This data entry screen is 
obtained by clicking “End 
Forces” on the main 
menu.  End boundary 
forces are illustrated in 
Figure 37.  These forces, 
designated as Ea, Eb, Ta, 

Figure 35. GUI screen for entering x- and distributed load
coordinates. 

Figure 34.   GUI screen for entering thrust line data.  
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and Tb.  Ea and Ta are the horizontal and vertical forces, respectively, acting on the boundary of the 
uphill side of the potentially unstable soil mass.  Eb and Tb are the horizontal and vertical forces, 
respectively, acting on the boundary of the downhill side of the potentially unstable soil mass. 
      An example of an end boundary load would be the hydrostatic force exerted by a body of water 
resting against the slope or the hydrostatic thrust (Ea) exerted by a water-filled crack located at the 
top of the slope.  In this case, the depth of tension crack is fixed and the height of water in the tension 
crack may entered be as shown in the “Problem Control” screen, Figure 28.  In that example, the 
tension crack depth of 3.6 ft was specified by the user and it was completely filled with water.  When 
this data (special case) is entered in Figure 28, the program automatically calculates the end 
boundary force due to water in the crack.  Alternately, the end boundary forces may be entered 
manually in the GUI screen in Figure 38. The factor of safety obtained from the Perturbation Method 
for the example shown was 1.639.   
 
Failure Surface 
 
Search Grid-Predetermined Trial Centers 
When the type of failure surface on the “Problem Control Screen” is clicked “Circular” the user must 
specify a grid for centers of trial shear surfaces (see Figures 39 and 40).  The grid is rectangular in 
shape.  The rectangular grid is specified by two coordinate points, as shown in Figure 40.  The x-and 
y-coordinates, XSTART and YSTART, of the upper left-hand corner of the grid and the x-and y- 
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Figure 36.  View of enlarged cross section and coordinates of external distributed load. 



T Hopkins, L Sun, and M Slepak--- University of Kentucky Transportation Center, College of Engineering 
 

 

77

 

coordinates, XFIN AND YFIN, of the lower right-hand corner of the grid must be specified.  To 
establish the number of trial centers of the grid in the horizontal direction each increment, the user 
must specify the width, XDEL, of each increment.  The value selected for the increment, XDEL, 
must be such that    
     

 
XFIN XSTART m (int eger value ).

XFIN
− =  (201) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37.  An example of a situation where an end boundary force may occur in a tension crack.
partially filled with water (After Janbu, 1954).  

End Boundary Force, Ea, due to water in tension crack

Ea
Tension Crack

Earth Dam
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Figure 39.   Data input required in performing a circular search analysis using a grid
of trial centers (example after Bailey and Christian, 1969).   

Figure 38.  GUI screen for entering end boundary forces. 
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The number of trial centers of the grid in the vertical direction is established by specifying the width, 
YDEL, of each increment.  The value selected for YDEL must be such that  
 
 

YSTART YFIN n (int egervalue ).
YDEL

− =  (202) 

 
 
The grid of trial centers, as specified above, may be reduced to a single point by setting  

 
XSTART XFIN and YSTART XFIN .= =  

 
 

Generation of trial centers starts from the top, left-hand corner (XSTART, YSTART) of the grid and 
proceeds to the right in the x-direction until 
 

1XSTART ( m )XDEL XFIN .+ − =  (203) 
 
The integer m is defined by Equation 201.  After generating the top row of the trial centers and 
solving for the factors of safety, the program selects the trial centers for the next lower row.  Each 
time a row of trial centers is computed, the program starts at XSTART and moves downward an 
amount YDEL.  This operation proceeds until       

XSTART=110; YSTART=290

XE=186; YE=88

XDEL=5

XFIN=210; YFIN=190

YDEL=5RDEL=4

Grid  

Rmin

Figure 40.  Parameters for defining search grid and trial circles. 



T Hopkins, L Sun, and M Slepak--- University of Kentucky Transportation Center, College of Engineering 
 

 

80

 

 1YSTART ( n )* YDEL YFIN ,− − =  (204) 
 

 
where n is defined by Equation 202.      
     When Equation 204 is satisfied, all 
trial centers (and safety factors) have 
been solved.  For each trial center, the 
computer program stores the minimum 
factor of safety and later prints these 
factors of safety in the form of a grid of 
minimum factors of safety.  However, 
factors of safety for all trial circles as 
well as other geometric data are printed.  
Additionally, the program selects and 
prints the minimum factor of safety of 
all trial circles obtained from the 
search-grid operation.  
     The radius of each trial shear surface is generated by specifying the length of the radius 
increment, RDEL:     
 

RO RMIN RDEL= +  (205) 
 
where  RO= radius at the trial center,  
  RMIN = the initial radius, and  
 RDEL = the radius increment.   
 
If XDEL, YDEL, and RDEL remain blank, then the default values for each of those increments is 
5.0.  
 
Initial Radius Coordinates and Analysis of Individual Shear Surfaces 
To establish an initial radius, RMIN, at a given center, the user must specify a point on the cross 
section by the coordinates XE and YE, as shown in Figure 41.  The initial radius, RMIN, at each trial 
center is computed as the distance from the center of the circle and the specified point.  Additional 
radii are generated from Equation xx.  When circular shear surfaces are generated, the starting 
coordinate point XED, YE must never be placed above the ground line.  By placing the starting 
radius coordinated point below the ground line, the user can control the depth of shear surfaces and 
avoid the analysis of shallow shear surfaces. 
     The radius RMIN at trial center is incremented until a trial center intersects the bottom layer 
boundary.  When this occurs, the computer program determines a circle (and corresponding radius) 
that is tangent to the bottom layer boundary.  After computing the factor of safety for the tangent 
circle, the computer program proceeds to the next trial center of the grid. The minimum factor of 
safety at each trial center is determined and stored.   
     If the factor of safety of a single circle is required, then only values of XSTART, YSTART, and 
RO (the value of the known radius) need be supplied.  Values of XFIN, YFIN, XDEL YDEL, RDEL, 
and XE and YE are not needed.  
     There is a special opportunity in the computer program for analyzing retaining walls.  In this case, 
in performing a search analysis, the user need not supply the x-coordinate of an initial point but 

Figure 41.  Specifiying a noncircular shear surface using
the dropdown box on the Problem Control screen. 
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rather XE is input as zero.  The computer program calculates XE as an x-coordinate of a point of 
intersection of a vertical wall face and a horizontal line, y=YE.     
 
Noncircular Failure Shear Surface 
The user may specify a noncircular shear surface by clicking “NONCIRCULAR” in the drop down 
box (Figure 42) under “Failure Surface” in the Problem Control Screen Figure 28.  When this shear 
surface is specified, the user must supply x-and y-coordinates of the individual shear surface in the 
screen shown in Figure 42.  To access this screen, the “Failure Surface” on the main menu in Figure 
28 is clicked.  Although the -type surface is noncircular, the user does not have to supply x-and y-
coordinates in this specific case because the program automatically generates the coordinates.      
     In performing bearing capacity analysis, a Prandtl-type shear surface is recommended.  A full 
discussion of this type of shear surface was fully described in the report section entitled,  “Shear 
Surface Used in Bearing Capacity Analysis.”   Figure 14 illustrated the shape of the this shear surface 
for a one-layered problem while Figures 16 and 17 illustrated the shear surface for a multilayered 
bearing media.  This type of “shear is obtained when “SPIRAL” is clicked in the dropdown box in 
Figure 27 under “Failure Surface.”  The x-and y-coordinates of this type of shear surface are 
automatically generated by the computer.  However, the user must define the left-hand and right-
hand x- and y-coordinates of the “active Zone”, as illustrated in Figure 43.  
 
Reinforcement Geometry and Strength Properties 
 
When tensile reinforcing elements are involved in the stability problem and the user answered “YES” 
in the box labelled “Reinforcement” in the “Problem Control Screen,” information regarding the 

X-and y-coordinates of shear surface

 

Figure 42.  The x-and y-coordinates of the noncircular shear surface. 
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tensile element must be supplied.  This information is supplied on a screen that appears when the 
button labelled “Reinforcement” on the menu in the right-hand side of the “Problem control Screen” 
is clicked.  The screen is shown in Figure 44. The length, end point (x-coordinate at the end of the 
layer), elevation, the interaction coefficients (see at the top and bottom tensile element reinforcement 
sheet are entered as shown in the figure.  Any number of reinforcement sheets and properties may be 
entered using the “Add Row” or “Insert Row.”  Any row of data may be deleted using the “Delete 
Row” command.  In the example shown in the Figure 44, the initial factor of safety without 
reinforcement was 1.15.  Assuming a strength of 1350 lb/ft and interaction coefficients of 0.9 and 
placing the reinforcement layer at 2 inches from the bottom of the base aggregate, the factor of safety 
increases to 1.25. This is based on the assumption, of course, that sufficient strain has occurred in the 
reinforcement layer to mobilize a strength of 1350 lbs/ft.  The soil-fabric interaction coefficients for 
soils above and below the reinforcement sheet are the coefficients k1 and k2 in Equations 150 and 
151. 
 
 

(x = 0.0; y=20.0) 

(x = 1.958; y=20.0) 

Active 
Zone

 

Figure 43. Input width (coordinates) of active Zone when the “Spiral” shear surface is
designated.   
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Printout of Results  
 
As shown on the main menu on the right-hand portion of each screen (Figure 28 for example) the 
user can “Save,”  “Save As,”  “Execute” (the problem), “See Result,” “Print Section View,” and “Go 
Back” (to previous screen).   The printout includes problem control data such as the type of analysis, 
the method used, coordinates of the ground line, number of slices used, and etc, as shown in Figure 
45.  Example output pertaining to each layer is illustrated in Figure 46.      In Figure 47, example 
output data includes the thrust ratio ( 0 33( . )η =  used in the analysis, the x-coordinates of external 
vertical distributed loads (for an 80 psi tire contact stress—dual wheels), end boundary forces, and x-
and y-coordinates of the Prandtl-type shear surface (see Figures 13-15 and 16 and 17).  Cross section 
data computed according to number of slices entered is illustrated in Figure 48.  Output example 
showing computed values of pullout resistance in the active and passive zones is illustrated in Figure 
49.  In this output, the pullout resistant forces are compared to the input strength of the fabric.  The 
input strength of the fabric is compared to the pullout resistant forces; the force selected for 
calculations satisfies Equation 147.  The output also includes the number of iterations required for 
convergence of the factor of safety, the value of the factor of safety (for a noncircular analysis), as 
shown in Figure 50, and a check of the factor of safety to determine if it satisfies determine if 
horizontal, vertical, and moment equilibriums are satisfied.  

Reinforcement 
Sheet

 

Figure 44.  Reinforcement data entry.  
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     When the user specifies a grid of safety factors (for circular analyses—see Figures 39 and 40) a 
printout is obtained as shown in Figure 51.   The grid printout contains the minimum factor of safety 
at each specified trial center.  The program searches automatically the factors of safety at trial circle 
coordinates and printout out the minimum value of factor of safety.  Finally, all factors of safety 
generated at each trial circle center are searched; the minimum value of factor of safety is determined 
and printed.        

 

 

Figure 45.  View of problem control data and ground line coordinates output. 
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Figure 46.  Example output showing properties of layers and
coordinates of boundary line. Figure 47.  Example output of values of external vertical

distributed loads, end boundary forces, and coordinates of log
spiral shear surface.   
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Figure 48.  Example output of cross section data. 
Figure 50.  Output example showing the number of
iterations required for convergence of the factor of safety,
a check of the horizontal, vertical, and moment
equilibrium, and final factor of safety. 

Figure 49.  Output example showing computed values of
pullout resistance in the active and passive zones.
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Figure 51.  Example output for grid search (circular analysis).   
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REASONABLENESS OF SOLUTIONS 
 
Creditability and reasonableness of results obtained from the Hopkins and Slepak-Hopkins models 
and the newly developed software were established by solving and comparing solutions from the 
proposed bearing capacity model to solutions from other theoretical, or empirical, mathematical 
models for different classes of bearing capacity problems. The classes of problems are as follows: 
 

• a homogeneous layer of bearing medium, 
• a bearing medium composed of two different layers of material, and 
• a multilayered, bearing medium -- case studies. 

 
Bearing capacity solutions of the various classes of selected bearing capacity problems are discussed 
as follows. 
 
Homogeneous Bearing Medium 
 
As one approach to establishing the reasonableness of solutions obtained from the Hopkins and 
Slepak models, classical bearing capacity 
factors, which historically have been used 
for several decades by geotechnical and 
structural engineers to design structural 
footers resting on a soil foundation, are 
compared to bearing capacity factors 
obtained from the Slepak-Hopkins and 
Hopkins models.  Basically, the classical 
bearing capacity factors, Nc, Nq, and N( 
were obtained using the Slepak-Hopkins 
limit equilibrium model.  Formerly, the 
factors had been derived using the Hopkins 
limit equilibrium model.  Those factors 
have been compared to classical bearing 
capacity factors in a previous publication 
(Hopkins 1986).  Since the factors of 
safety obtained from the Hopkins model 
are within "3 percent of the factors of 
safety obtained from the Slepak-Hopkins 
model, the comparisons are not repeated here.  In deriving the factors, iteration is used until a factor 
of safety equal to 1.00 is obtained.  The assumed shear surface used in the iteration is a type (non-
circular) as depicted in the Figures 13 through 17.  Detailed discussions of the comparisons of 
classical bearing capacity factors and bearing capacity factors derived from the Slepak-Hopkins 
model are presented below.         
 
Classical Bearing Capacity Equations and Factors 
Although a closed analytical solution has not been found for determining the maximum unit load, qu, 
that a foundation can support, Prandtl (1921) and Reissner (1924 -- Vesic', c.f. Winterhorn and 
Fang), using methods of the Theory of Plasticity, found that for weightless soils (γ = o): 
 

I

I--Active Wedge

II

II--Central Wedge

Load = Qu 

q = overburden stress

III

III --Passive Wedge
L

Stress= qu =
Qu

B

B

L

Strip Loading

Figure 52.  Bearing capacity of a shallow footer. 
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u
cu q

Q= = +q qNcNBL
 (206) 

 
where (see Figure 52) 
 

qu  = ultimate stress which the footing can withstand without failure, 
Qu = ultimate load which the footing can withstand without failure, 
B = width of footing, 
L = length of footing, 
γ = unit weight of the bearing medium, 
c =  cohesion, 
D = depth of footing below the surface, 
q= uniformly distributed surcharge due to the overburden stress = γ.D, and 
Nc, Nq =  dimensionless bearing capacity factors. 

 
From solutions provided by Prandtl (1921) and Reissner (1924), 
 

tan tan2
q = +N e 4 2

π φ π φ 
 
 

 (207) 

 
and 
 

cot .c q= ( - 1)N N φ  (208) 
 

According to Vesic' (c.f. Winterhorn and Fang 1975), it can be shown that for a cohesionless soil 
(c = o; q = o): 
 

u
1=q BN2 γγ   (209) 

 
where Nγ is a dimensionless bearing capacity factor that must be evaluated numerically (see Caquot 
and Kerisel, 1953).  Also, Vesic' presents an analytical expression, 
 
 

tanqN 2( +1)Nγ φ≈   (210) 
 

for approximating this bearing capacity factor.     
      Based on superposition, which is not strictly correct, the ultimate bearing capacity of a footing 
may be approximated by the expression 
 
 

cu q= + +(0.5)Bq qNcN N γγ   (211) 
 

This expression may be referred to as the classical bearing capacity equation and is often referred to 
as the Buismann-Terzaghi equation (Buismann 1940; Terzaghi 1943). This equation in this form 
applies strictly to footings of an infinite length (strip loading). Bearing capacity factors given by 
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Equations 96,97 and 99 were developed from theoretical considerations for the shear surface shown 
in Figure 21.  Terzaghi (1943) also developed values of the bearing capacity factors, Nc, Nq, and Nγ 
assuming a different failure pattern, or shear surface, than that shown in Figure 21. According to 
Vesic' (c.f. Winterhorn and Fang 1975), the Terzaghi bearing capacity factors, although numerically 
there are substantially small differences, are being abandoned and the trend among engineers is to 
retain the Prandtl-Reissner and Caquot-Kerisel factors. 
     The ultimate bearing capacity obtained from Equation 100 may be applied only for solving 
problems involving a single, homogeneous bearing medium and in footings that are infinitely long 
(strip loading)--plane strain problems. The problem, from a theoretical viewpoint, becomes 
exceedingly complex when the foundation shape is something other than a long rectangular shape. 
The expression generally used in practice, which is semi-empirical and based on comparative loading 
tests with footings of different shapes, is 
 
 

c c q q cu = +q +(0.5)q cN S N S BN Sγγ  (212) 
 
 
where Sc, Sq, and Sγ are dimensionless shape factors, or parameters. These values change with 
foundation shape; they may be obtained from DeBeer, 1967 and Vesic', 1975 (c.f. Winterhorn and 
Fang). 
 
Bearing Capacity Factors Derived from the Slepak-Hopkins Limit Equilibrium Model 
The bearing capacity factors, Nc, Nq, and Nγ, may be calculated from the Slepak-Hopkins and 
Hopkins limit equilibrium bearing capacity computer models and the mathematical algorithms. 
Bearing capacity factors computed from the Slepak-Hopkins model may then be compared to factors 
obtained from classical bearing capacity theory—Equations 207, 208, and 209.  By deriving bearing 
capacity factors from the Slepak-Hopkins model to classical bearing capacity factor, the 
reasonableness of solutions-- at least for a single, homogeneous bearing medium—obtained from the 
Slepak-Hopkins model may be judged.  Consequently, such a procedure is useful in establishing the 
creditability of the Slepak-Hopkins pavement bearing capacity model and computer program. For 
example, to determine the value of Nc when φ equals zero, the following procedure may be used: 
 
Scenario 1 -- Nq - bearing capacity factor 
Let 
 

q  = 0, 
γ  = 0, and 
Sc = 1, 

 
then Equation 212 becomes: 
 

cu =q cN   (213) 
 
 
Also, let c equal to 1.00, then 
 

cu =q N   (214) 
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that is, the ultimate bearing stress is equal to the bearing capacity factor, Nc.  Values inserted into the 
bearing capacity computer program for this example are as follows (see Figure 52): 

     
   qu  = an initial value is assumed, 
    γ   = unit weight of the bearing medium = 0, 
    c    = 1 
    B   = width of footing (an assumed value; independent variable) = 10, 
    Sc   = 1 (an infinite strip is assumed), 
    q   = 0 (no overburden stress is used; D = 0), 
    yg  = elevation of ground surface is assumed 
    φ   = an assumed value -- varied in the analyses. 
 

     A trial and error procedure is used to satisfy Equation 214 (F=1.0).  For example, let φ equal zero 
and qu equal 5.14 (from Equation 208). Values of other parameters are shown above.   The factor of 
safety is 0.996.  Varying qu, and iterating, a factor of safety of 1.000 is obtained when qu equals 4.91. 
This routine is continued using different values of N.  Selecting another value of N equal 43 degrees, 
Equation 206 yields a value of 105.11 for Nc.  Inserting this value for qu, a factor of safety of 0.981 is 
obtained from the perturbation method.  Iterating on F, a factor of safety of 1.000 is obtained when  
 
        qu =Nc= 97.7. 
  
Values of Nc obtained from the perturbation method are compared to values of Nc obtained from 
Equation 208 in Figure 53 and in Table 3.  Differences in the classical values of Nc-bearing capacity 
factors and those obtained from the (Modified) Perturbation Method only range from about 1 to 10 
percent for values of N ranging from 0 to 45 degrees.         
 
Scenario 2 -- Nq - bearing capacity factor 
Let 
 
            c = 0,  
            q = 1, 

 γ = 0, and 
 Sc = Sq = Sγ = 1, 

 
 
Then Equation 212 becomes  
 

qu =q N .   (215) 
 
and a trial-and error-procedure is used to determine the bearing capacity factor, Nq .  A value of N is 
assumed and iteration is performed until a factor of safety of 1.00 is obtained.  When this condition is 
obtained Equation 215 is satisfied.  Comparison of values of Nq obtained from the Slepak-Hopkins 
model are compared to those obtained from the -Reissner Equation in Figure 54 and Table 3.  The 
differences only range between 1 to 3 percent.  
 
Scenario 3 -- N( - bearing capacity factor 
Several methods have been proposed for determining the values of the bearing capacity factor, Nγ 
(Terzaghi, 1943; Caquot and Kerisel, 1953; deMello 1969; Feda, 1961; and Vesic', 1970).  Many 
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different values of Nγ have been proposed and correct values of this bearing capacity factor remain 
very much unsettled.  
     Values of Nγ for different values of φ were estimated by Caquot and Kerisel (1953)--Vesic', 1975; 
c f  Winterhorn and Fang) based on the assumption that θa is equal to 45 o + φ/2, and  
 

 
2( 1) tanqN Nγ φ≈ +  (216) 

 
 
where Nq is defined by Equation 207 (Prandtl, 1921). Those values are based on the assumption that 
the base of the footing is frictionless.   
     Myerhof (1951, 1963)) estimated values of N( from the expression  
 
 
     ( 1) tan(1.4 )qN Nγ φ≈ −  (217) 
 
 
where Nq is defined by Equation 207 (Prandtl 1921).   
     An expression by Brinch Hansen (1970) defines values of N( as  
 

 

Nc --Perturbation (Limit 
Equilibrium) Method

Nc = (Nq –1)cot N
(Prandtl and Reissner)
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Figure 53.  Nc-bearing capacity factor as a function of N.    
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1.8( 1) tanqN Nγ φ≈ − . (218) 
 
     Values of Nγ may also be computed from the Slepak-Hopkins mathematical bearing capacity 
computer model.  These calculations are based on the assumed failure pattern in Figure 14.  
     Let 
 
 
 c = 0 
 q = 0 
 γ = 1 
 B = 2 
 Sc = Sq = Sγ = 1, 
 
Then Equation 212 becomes: 
 

uq Nγ= . (219) 
  
Again, a trial and error procedure is used to determine the bearing capacity factor, N(.  A value of N 
is assumed and iteration is performed until a factor of safety of 1.00 is obtained.  When this condition 
is obtained Equation 219 is satisfied.  Values of N( obtained from the Slepak-Hopkins model are 
compared to those obtained from the various proposed methods by others in Figure 55 and Table 3.    
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Table 3.  comparisons of bearing capacity factors computed from different proposed methods. 

Bearing Capacity Factors 

Experimental  
Test Results 

(Model Footing 
Tests) 

Angle 
of 

Internal 
Friction 

 
(Degrees) 

Prandtl 
and 

Reissner1 

 
Nc 

Slepak-   
Hopkins 

 
 

Nc 

Prandtl 
and 

Reissner1 

 
Nq 

Slepak-    
Hopkins 

 
 

Nq 

 
Caquot 

and 
Kerisel 

 
Nγ  

Brinch 
and 

Hansen 
 

Nγ  

 
 

Meyerhof 
 

Nγ  

 
 
 
 
 
 
 

Slepak 
and 

Hopkins 
 

Nγ  

Hopkins 
(1991) 

 
Nγ  

 
DeBeer/
Ladanyi 
(1961) 

 
Nγ  

 
Feda 

(1961) 

0 5.14 4.92 1  0.0 0 0 0 0   

5 6.49 6.17 1.57 1.557 0.45 0.09 0.07 0.512 0.52   

10 8.35 7.95 2.47 2.443 1.22 0.47 0.37 1.504 1.524   

15 10.98 10.38 3.94 3.92 2.65 1.42 1.13 3.43 3.47   

20 14.83 14.1 6.4 6.34 5.39 3.54 2.87 7.28 7.38   

25 20.72 20 10.66 10.66 10.88 8.11 6.77 15.5 15.40 14  

30 30.14 29.75 18.4 18.9 22.40 18.08 15.67 34.15 32.50 33  

35 46.12 46.3 33.3 34.5 48.03 40.71 37.15 75 70.20 83  

40 75.31 76 64.2 66.2 109.41 95.45 93.69 177 157.00 210 170 

43 105.11 97.7 99.2 101.5 186.53 164.52 171.14  255.83   

45 133.88 121.5 134.88  271.75 240.97 262.74 463 371.00   
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     As shown by the comparisons in Figure 55 and Table 3, the Slepak-Hopkins N(-bearing capacity 
factors range from about 12 to 38 percent larger than the N(-values estimated by the Caquot-Kerisel 
equation.  However, when the Slepak-Hopkins N(-bearing capacity factors are compared to N(-
bearing capacity factors from experimental model footing tests (DeBeer and Ladanyi, 1961; Feda, 
1961) the differences are much smaller.  The N(-bearing capacity factors from the Slepak-Hopkins 
approach are some 3 to 11 percent larger than N(-bearing capacity factors from the experimental tests 
for N-values of 25 and 30 degrees and about 10 to 16 percent lower than the experimental results for 
N-values of 35 and 40 degrees, respectively.  For the same values of N, the Caquot-Kerisel N(-
bearing capacity factors are some 22 to 42 percent smaller than the experimental values of N(.   N(-
bearing capacity factors obtained from the Hopkins bearing capacity model (1991) are very similar to 
those obtained from the Slepak-Hopkins Perturbation Model.  Comparisons of the various bearing 
capacity factors obtained from the Slepak-Hopkins model (and the Hopkins model, 1991) with 
published values, the Slepak-Hopkins model yields reasonable results, at least for one layer of 
bearing material.   
 
Minimum Subgrade Strength 
In the scenarios described, the values of bearing capacity factors, Nc and Nq, derived from the Slepak-
Hopkins bearing capacity perturbation model (and the Hopkins model, 1991) were shown to be close 
to values obtained from the Prandtl-Reissner equations.  Futhermore, values of Nγ-values from the 
perturbation method were larger than Nγ-values proposed by others.  However, the Nγ-values from 
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Figure 55.  Proposed values of the N(-bearing capacity factor as a function of N.    
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the perturbation approach were shown to be closer to Nγ-values obtained from experimental model 
footing tests.  Consequently, the perturbation approach is a viable model.  
      The Slepak-Hopkins perturbation model may be may be used to develop some practical aspects 
concerning pavement subgrades during construction. For example, the model may be used to 
estimate the minimum strength required to avoid failure of the subgrade subjected to construction 
traffic. The minimum CBR strength of the subgrade necessary to avoid failure under construction 
traffic and the minimum bearing strength to control a pavement may be found. These aspects are 
discussed as follows.  
 
Minimum undrained shear strength of subgrade  
The minimum undrained shear strength, c, or Su, of the subgrade required to withstand failure may be 
determined from the perturbation 
bearing capacity model. Similar 
analysis using the Hopkins model 
were presented previously elsewhere 
(1991).  The assumed failure pattern 
of the subgrade when subjected to an 
assumed dual-wheel loading is shown 
in Figure 14.  In this construction 
scenario, only one layer of material is 
involved for this stage of 
construction.  The relationship 
between undrained shear strength of 
the subgrade and tire contact stress, 
Tc, of the dual-wheel loading is 
shown in Figure 56.  The two curves 
were developed assuming factors of 
safety of 1.0 (a failure condition) and 
1.5.  A -type shear surface is assumed in the analysis.   Also, the problem is considered a plane strain 
situation, that is, the footing (of the tire in motion) acts like an infinite footing.  Assuming factors of 
safety of 1.0 and 1.5, the relationships may be expressed, respectively, as:    
 

23.84u sS T≈  (psf)    and   (220) 
 

35.74 12.8u sS T≈ + (psf)  (221) 
 
where  Su = undrained shear strength (in lbs/ft2, or psf) and  

Tc = tire contact stress (in psi). 
 
For tire contact stress of 80 psi, the minimum undrained subgrade strength required to maintain a 
factor of safety of 1.0 is about 1907 psf.  When the tire contact stress is 80 psi the minimum 
undrained subgrade strength required to maintain a factor of safety of 1.5 is about 2872 psf.  Based 
on this analysis, the required undrained shear strength of the subgrade must be greater than about 
1907 psf (or 13.2 psi).  However, as the strength of the subgrade approaches a factor of safety of 1.0, 
settlement (and rutting) under the wheels loads begin to occur according to model analysis. To 
prevent this situation, the factor of safety against failure must be some value above 1.0.  Moreover, as 
the tire stress increases above 80 psi, the minimum undrained strength required to maintain stability 
must increase above 1907 psf.  
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Minimum value of CBR of the subgrade--theoretical  
The minimum CBR value of the subgrade required to withstand failure may be determined from the 
Perturbation Bearing Capacity Model.  Similar analysis using the Hopkins model were presented 
previously elsewhere (1991).  To perform the analysis requires establishing some type of relationship 
between the undrained shear strength, Su and CBR.  In a previous study, Hopkins (1991) developed 
the following relationship: 
 

1.0140.465 uCBR S=  (psi) (222) 
 

Using the expression given by 
Equation 222, a relationship between 
CBR and tire contact stress may be 
developed using the Perturbation 
Model.   
     As in the previous analysis, the 
assumed failure pattern of the 
subgrade when subjected to an 
assumed dual-wheel loading is 
shown in Figure 14.  In this 
construction scenario, only one layer 
of material is involved for this stage 
of construction.  Using Equations 
220 and 221 (Figure 56) and the 
expression given by Equation 222, 
CBR may be expressed as a function 
of tire contact stress.  Selecting values of tire contact stress and factor of safety, the undrained shear 
strength may be computed from the equations in Figure 56.  Using Equation 222, the undrained shear 
strength may be converted to CBR.  Selecting several values of tire contact stress, the expressions in 
Figure 57 may be developed.  For a factor of safety of 1.0, the minimum CBR strength at failure is: 
 

0.079 sCBR T=  (%). (223) 
 
To maintain a factor of safety of 1.5, the minimum subgrade CBR may be obtained from the 
relationship: 
 

0.12 sCBR T=   (%).  (224) 
 

Assuming a contact tire stress of 80 psi, the minimum subgrade CBR value must be about 6.3 to 
maintain a factor of safety of 1.0.  However, to prevent failure and gross tire sinkage the factor of 
safety must be greater than 1.0.  For example, the minimum subgrade CBR strength must be 9.6 to 
maintain a factor of safety against failure of 1.5.     
 
Minimum CBR bearing strength--field studies 
Thompson (1988) cited two field subgrade studies that show the relationships among tire contact 
stresses, field CBR values, and tire sinkage (or rutting). Relationships between tire pressures and 
sinkage values for tire inflation pressures ranging from 50 to 80 psi are shown in Figure 58.  For this 
range in tire pressures, the minimum CBR strength of the subgrade required for limiting tire sinkage 
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to 0.25 inches, or less, must be between about 5.3 (50 psi tire inflation pressure) and 8.5 (80 psi), 
respectively.  Data, labeled as "Kraft" in Thompson's paper (1988), were re-analyzed to obtain an 
equation that relates tire pressure (Tc), CBR, and tire sinkage(s).  Graphical results of these re-
analyses are shown in Figure 58 and may be expressed in the approximate form as: 
 

1
6.04 (1 ) 0.2 0.034

c

CBR
S S

T

=
+ + −

 .  (225) 

 
For an inflation pressure of 80 psi (and assuming the tire pressure is approximately equal to the tire 

contact stress, Tc,) and limiting tire sinkage 
to 0.25 inch, the required CBR bearing 
strength is about 9.1, as determined from 
Equation 225 (for Kraft data at 0.25 inches 
of sinkage)).  This CBR-value is nearly 
equal to the theoretical CBR-value of 9.6 
obtained from the Slepak-Hopkins 
perturbation model at a factor of safety of 
1.5.  This value is slightly higher than the 
field value of 8.5 shown in Figure 58.   
     As shown in Figure 58, and for tire 
pressures ranging from 50 psi to 80 psi, the 
CBR values required for limiting tire sinkage 
to a value of 0.25-inch ranges from 5.3 to 
8.5, respectively (Rodin data). Using these 
tire pressures and corresponding CBR 
values--which correspond to a tire sinkage of 
0.25 inches--and converting the CBR values 
to undrained shear strength (Equation 190), 

the average factor of safety obtained from the Perturbation Bearing Capacity Model for each 
combination of tire pressure and CBR value is about 1.37.  Performing a similar analysis using a tire 
sinkage of 3.0 inches, CBR-values of 5.3, 6.4, 7.5, and 8.5 that correspond to tire stresses of 50, 60, 
70, and 80 psi respectively, and converting the CBR-values to undrained shear strength using 
Equation 190, the average factor of safety obtained Perturbation Model was about 1.12—a state near 
failure.   The relationship obtained for this analysis is shown in Figure 59. 
     A similar analysis was performed using CBR-values from the data labeled “Kraft” in Figure 58.  
The analyses were performed using CBR values that occurred at a sinkage value of 0.25 inches and 
tire pressures of 50, 60, 70, and 80 psi.  The average factor of safety for the sinkage value of 0.25 
was about 1.47.  This relationship is shown in Figure 59.   
      Finally, analyses were performed holding the factor of safety constant.  Tire pressures were 
varied and values of 50, 60, 70, and 80 psi were used in the analyses.  In the first scenario, a factor of 
safety of 1.0 was assumed.  For each selected value of tire stress, the undrained shear strength of the 
subgrade was varied until the factor of safety was equal to 1.0.  Similar analyses were performed 
using a factor of safety of 1.5.  Relationships obtained from the model analyses performed in that 
fashion are shown in Figure 59 and compared to the curves obtained from the field data.  As the tire 
sinkage increases, the factor of safety against failure decreases.  When the sinkage value approaches 
about 3 to 4 inches, the factor of safety approaches a value of 1.0.  As tire sinkage decreases and 
approaches a value of 0.25 inches or less, the factor of safety approaches a value of 1.5.                                        

Figure 58.  Tire sinkage as a function of subgrade
strength (after Thompson 1988). 
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     Both theoretical analyses 
using the Perturbation Model 
and field data indicate that the 
CBR strength required to insure 
good stability and low tire 
sinkage values of the subgrade 
during construction is about 9.  
A safety factor of 1.5 or greater 
is a reasonable value to 
maintain this condition and is a 
good working value.  This 
condition corresponds to a tire 
contact stress (dual-wheelps) of 
80 psi.  When tire stresses 
larger than 80 psi are 
encountered than a larger value 
of CBR of the subgrade must be 
determined from the 
relationships above.  Results 
obtained from the field 

experiments confirm the results obtained from the Slepak-Hopkins and Hopkins models for 
subgrades during construction (one homogenous layer). 
 
Bearing Medium Composed of Two Different Layers of Materials 
 
Application of classical bearing capacity theory to highway problems involving non-homogenous 
soil conditions has been limited because classical theory is limited to only one layer of material and 
highway construction problems usually, at some stage, involve more than one layer of material.   
Two common types of very typical 
situations encountered during roadway 
construction involving two different 
layers of materials are illustrated in 
Figures 60 and 61.  In the most common 
situation, a granular base of the pavement 
is constructed on a compacted soil 
subgrade.  Alternately, the soil subgrade 
is stabilized, or modified, using some 
type of chemical admixture, such as 
hydrated lime or Portland cement, as 
illustrated in Figure 61.  If the soil 
subgrade remains unsoaked during 
construction, then bearing capacity 
problems do not normally develop.  CBR-
values of compacted, unsoaked clayey 
soils typically, range from 10 to 40 
(Hopkins, 1991).  For example, assume 
that an 8-inch layer of base aggregate has 
been placed on the unsoaked, compacted soil subgrade.  Assume also that the CBR-value of the soil 
subgrade is 10.  Converting that value of CBR to undrained shear strength using Equation 190 yields 
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a value of 2719 lbs/ft2. Using a φ -value 
of 43 degrees for the aggregate and 
assuming a dual-wheel tire of 80 lbs/ft2, a 
factor of safety against failure of 1.74 is 
obtained from the Perturbation Method.     
     Similarly, assume that an 8-inch layer 
of soil subgrade is stabilized with 
hydrated lime and rests on the soil 
subgrade.  Assuming an undrained 
strength of 3456 lbs/ft2 (seven-day 
strength at the 85th percentile test value; 
Hopkins and Beckham 1997), the factor 
of safety is 1.79.       
     Stability and constructability of the 
base aggregate, or the chemically treated 
layer, depends on the shear strength of the 
subgrade.  The relationship between the 

required thickness of granular base or stabilized layer as a function of the subgrade strength may be 
developed using the perturbation approach, as shown in Figure 62.  In those analyses, factors of 
safety of 1.0 and 1.5 and a tire contact stress (dual wheels) of 80 psi are assumed.  If the subgrade 
CBR value equals 3 (an undrained strength of 6.4 psi, or 917 psf), then thicknesses of 22.5 and 42.7 
inches would be required to maintain factors of safety of 1.0 and 1.5, respectively.  However, 
thicknesses of this magnitude may have to be constructed in lifts.  Reduced loading of gravel trucks 
may have to be used to reduce contact tire pressures to avoid deep rutting, or failure of the subgrade.  
Alternately, if the subgrade is very weak, then the soft material may have to be undercut to firmer 
material and replaced with stone to avoid failure, or deep rutting and shoving and pushing of the 
subgrade during construction.                                                                            
     To avoid failure, or deep rutting, the subgrade must contain some minimum strength and 
aggregate thickness to maintain stability.  As shown in Figures 56 and 57, the untreated subgrade 
beneath the aggregate base, or chemically treated base, must have a certain minimum strength.  For a 
tire contact stress of 80 psi, the minimum strength ranges from about a CBR of 8 to 10, as shown in 
Figure 62, for factors of safety ranging from 1.0 to 1.5.     
     In some instances, the aggregate base is reinforced with a geotextile tensile element, as depicted 
in Figure 2.  Depending on the degree of 
strain mobilization, Perturbation Model 
analyses show that the factor of safety 
increases when tensile elements are used 
to reinforce the base.  In figure 63, the 
thickness of aggregate base, with and 
without tensile elements, required to 
maintain a factor of safety of 1.5 under a 
dual wheel contact stress of 80 psi is 
shown.   In those analyses, it was 
assumed that sufficient strain occurs to 
mobilize the ultimate strength of the 
tensile element.  A tensile element force 
of 1350 lb/ft was used.  The estimated 
trend, as shown in Figure 64, indicated 
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Figure 61.  Construction of chemically stabilized
subgrade on a mechanically compacted soil subgrade.
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that, for this situation, the thickness 
required for the reinforced case ranges 
from about 7 inches to 2 inches for CBR 
strengths of the subgrade ranging from 1 
to 10.  However, the differences would be 
much less when the mobilized strains are 
less.                    
 
Multilayered Bearing Medium  
 
The Slepak and Hopkins Perturbation 
approach was extended to analyze 
foundations containing multiple layers of 
soils, or materials, which have different, 
shear strengths.  In this study, the 
Hopkins and the Slepak-Hopkins stability 
models were extended to analyze flexible 
pavements containing different materials 
and tensile element forces.   
 
Analyses of the 1959-1960 AASHO Road Test    
In 1962, the American Association of State Highway Officials (AASHO -- currently identified as 
AASHTO, or the American Association of Highway Transportation Officials) published the results 
of an extensive road test conducted at Urbana, Illinois during 1959 and 1960. Many trucks having 
various axle configurations and loads were driven continuously for several months over pavement 
sections of various thicknesses. Several pavement loops were constructed. Several loops contained 
sections of various combinations and thicknesses of asphalt concrete, base material (crushed stone), 
and a subbase material (a sand-gravel mixture).  In 1991, the Hopkins Model was used to analyze 
237 pavement sections occurring on loops 
3, 4, 5, and six (lanes 1 and 2) of the 
AASHO Roadway Test.  Since the 
Slepak-Hopkins Perturbation Model 
yields essentially the same factor of 
safety as the Hopkins model, results 
obtained from the Hopkins model (for the 
unreinforced case) would apply to the 
Slepak-Hopkins model.  
     The performances of the roadway 
sections at any given time were judged in 
terms of a present serviceability index. 
This index, defined as a measure of the 
pavement condition, depends on the 
surface roughness, cracking, and 
patching. The index ranges on an arbitrarily selected scale from zero to five. Asphalt pavements 
generally had an initial index of about 4.2.  When a pavement section reached a value of 1.5, the 
section was considered to be in a failure condition.  Most often when the index decreased to 2.0, it 
decreased immediately to 1.5; the section was either taken out of the test, or an overlay pavement 
was constructed, and the testing of the section continued. The purposes of the Hopkins model 
analyses were to gain an overview of the magnitudes of the factors of safety obtained for the various 
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pavement sections and to determine the reasonableness of results obtained from the analyses. Most of 
the pavement sections essentially failed; that is, the serviceability index reached a value of 1.5. The 
exact nature of the failures was not described.  About 89 percent of the sections analyzed reached a 
serviceability index of 1.5. 
 
Assumed Shear Strengths of Flexible Pavement Layer, Aggregate Base, and Soil Subgrade 
Because shear strength of asphalt materials varies with temperature and temperatures within the 
asphalt concrete materials vary with pavement depth, the shear strength varies with pavement depth 
(Hopkins, 1991; Hopkins and Beckham 1995). To examine the variation of shear strength with 
temperature, unconsolidated-undrained triaxial compression tests were performed on asphalt core 
specimens obtained from an asphalt concrete pavement site in Kentucky.  The testing procedure and 
apparatus were described previously in the section entitled “DEFINING SHEAR STRENGTH 
PARAMETERS OF FLEXIBLE PAVMENT LAYERS.”  Relationships of the angle of internal 
friction, φ , and cohesion, c, and temperature were shown in Figures 22 and 23.  A temperature-depth 
model developed by Southgate et al, 
1969,1975,1981, and 1982) was used 
to define the temperature at any 
selected depth.  The assumption was 
made that the relationships in Figures 
22 and 23 represented the strengths of 
the flexible pavement at the AASHO 
Road Test.     
     Shear strength parameters, φ  and c, 
of the base material (crushed stone) 
were estimated to be 43 degrees and 
zero, respectively.  This assumption 
was based on actual triaxial test results 
obtained from testing similar compacted aggregates. Since CBR-values of each loop were given in 
publications by the AASHO Road Test, the relationship given by Equation 188 was used to convert 
the “CBR-values to undrained shear strength, Su.  Converted values are shown in Table 4.   
 
Typical Data Set-Up and Illustrations of the Analysis of Unreinforced Flexible Pavement and Results 
Typical data setup is shown in Figure 65.  To illustrate the stability analysis of unreinforced flexible 
pavement using the method by Hopkins (1986,1991, 1994a, 1994b, 1995; Slepak and Hopkins, 1998 
), flexible pavement sections of loops 3, 4, 5, and 6 (lanes 1 and 2) of the 1960 AASHO Road Test 
(1962) were made using two different temperature assumptions (Hopkins, 1991).  In the first 
analysis, the surface temperature, (Ts), and the average air temperature, (Ta), were assumed to be 60o 
and 27.3o C, respectively.  Surface temperatures of pavements in that part of the country (Ottawa, 
Illinois—study site) can reach values of 60o C.  To account for temperature variation (and variation 
of shear strength) with depth in the asphalt pavement, relationships given by Southgate, et al (1982) 
were used.  For assumed surface and air temperatures of 60o and 27.3o C, the temperature, T, for any 
depth, D (in cm) may be determined from their relationships.  
     Each pavement section was divided into 2.54-cm layers (Figure 65, pavement section 599, loop 4, 
lane 1).  The temperature at each mid-point of each layer was calculated from equations given 
elsewhere (Southgate et al, 1969,1975,1981, and 1982). Using those equations and the data in 
Figures in 22 and 23, strength parameters, φ  and c, of each finite layer were determined.  A second 
set of analyses was performed using a surface temperature of 25o C.  Temperatures were assumed to 
be 25o C throughout the full depths of the asphalt concrete pavements. 

Table 4.  Conversion of CBR-value of AASHO 
Road test loop to undrained shear strength. 

1959-60 AASHO 
Road Test Loop 

Number 

Soil 
Subgrade 

CBR-
Value of 

Loop 

Undrained Shear 
Strength, 

0 9792 173 .
uS . CBR=  

3 2.7    827 
4 3.7 1,126 
5 3.0   917 
6 3.9 1,186 
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Results     
In Figure 66, the factors of safety of the pavement sections (Ts equal 60o C) are shown as a function 
of weighted, 18-kip, equivalent single-axle loads (ESAL).  Factors of safety of some 29 sections of a 
total of 215 pavement sections are not shown in this figure because the present serviceability index 
never reached a value of 2.5 during the road test.  The factors of safety of those 29 sections ranged 
from 1.19 to 2.00 and averaged 1.51.  ESAL values were greater than eight million.  Factors of safety 

of all sections ranged from 
0.63 to 1.8.  As shown in 
Figure 64, the slope of the 
factor of safety-ESAL curve 
increases rapidly up to a factor 
of safety of about 1.3 and an 
ESAL value of one million. 
When the factor of safety is 
greater than 1.3, or the ESAL 
value is greater than about one 
million, the slope of the curve 
tends to decrease, become 
flatten, and approach a safety 
factor of about 1.5.  At that 
stage, the ESAL value 
approaches eight million. 
When the factor of safety 
exceeds a value of 1.5, the 
ESAL values are greater than 
eight million. 
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Figure 66. Factor of Safety of 1962 AASHO pavement sections
as a function of values of ESAL (After Hopkins, 1991; Hopkins
and Slepak, 1998). 
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Figure 65.  Typical model design setup. 
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     The curve in Figure 66 was 
based on a surface 
temperature of 60o C and an 
average air temperature of 
27.3 o C.  As a means of 
examining the effect of 
temperature on the factor of 
safety (Figure 67), the 
analyses were repeated using a 
surface temperature of 25o C 
and assuming that the 
temperature of the asphalt 
pavement of each section was 
equal to a constant value of 
25oC throughout.  Decreasing 
the surface temperature of the 
asphalt pavement from a value 
of 60o to 25o C causes a slight 

increase in the factor of safety.  For ESAL values ranging from 1 to eight million, the differences in 
factors of safety of the two curves range from about 0.23 to 0.27, as shown in Figure 67.  
     Data shown in Figure 66 may be illustrated in another form.  Values of ESAL were sorted in 
ascending order, grouped (arbitrarily), and the average factor of safety of each group was computed.  
As the average factor of safety increases, the value of ESAL for each group increases, as shown in 
Table 1.  The average factor of safety of 53 percent of all sections ranged from only 0.95 to 1.14 and 
ESAL values were less than only 0.5 million (Pt equal 2.0).  The serviceability index of some 13.5 
percent of the sections did reach a value of 2.0 during the duration of the road test and the ESAL 
values exceeded 8 million.  The average factor of safety of this group generally exceeded 1.5.  These 
data show that reasonable solutions can be obtained using limit equilibrium methods, as proposed 
herein.  A more in depth analysis of the 1959-60 Road Test has been given elsewhere (Hopkins, 
1991) 
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Figure 67.  Effect of temperature on the factor of safety of
AASHO flexible pavement sections. 

Table 5.  Average factors of safety of ESAL groups 
ESAL Group 
(Pt = 2.0) 

Average Factor of 
Safety, F 

Percentage of Total Pavement 
Sections  

<50,000 0.95 
 

14.9 

50,000 - 200,000 1.08 
 

26.0 

200,000 – 500,000 1.14 
 

12.1 

500,000 – 1 million 1.30 
 

17.2 

1 million – 8 million 1.40 
 

16.3 

>8 million 1.51 13.5 
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CASE STUDY—KY ROUTE 842 

 
Flexible Pavement Design Sections  
 
As another means of validating results obtained from the Slepak and Hopkins Perturbation Model, a 
roadway section located in Northern Kentucky was analyzed.  During construction of a flexible 
pavement section on a portion of KY 
Route 842 in Boone County, 
problems were encountered at a few 
locations.  In some areas, additional 
aggregate was added during 
construction while in other areas 
patching was required shortly after 
construction.  Six sites were selected 
for a detailed study. 
     Two design alternates for this 
roadway section are shown in Figure 
68.   In the first section, the design 
involves using 8 inches of 
mechanically stabilized subgrade.  
This technique is seldom used in 
Kentucky and usually involves 
mixing large stone with the clayey 
subgrade.   Hopkins and Beckham 
(1995, 2000) show that this 
technique is ineffective when the 
clay content in the stone-soil matrix 
equal or exceeds 10 percent.  In this 
case, the strength of the stone-clay 
matrix becomes nearly equal to the 
strength of the clay.   
     Although design values of ESALs 
(Equivalent Single Axle Loads) and 
CBR were not available, values may 
be obtained from computer software 
developed by Sun, Hopkins, and Ni 
(2004-unpublished work).  The 
Kentucky flexible design curves 
(Southgate et al, 1981) were 
programmed using a finite difference 
technique.  PowerBuilder 8.0 was 
used to create a Windows’ computer 
software that contained the 1981 
design curves in a finite difference 
form.  The main menu of the 
software is shown in Figure 69.  The 
graphical user interface is shown in 

Boone County, KY 842 
Design Alternates

Boone County, KY 842 
Design Alternates

11” DGA 

8.0” Asphalt

8.0” Mechanically
Modified Soil Roadbed

Tensile Element Grid

Design 1 Design 2

Figure 68.  Original design alternates for KY Route 842. 

Figure 69.  Main menu of 1981 flexible pavement design
curves (after Southgate et al) and computer software (after
Sun, Hopkins, and Ni, 2004). 
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Figure 70.  By inserting different 
combinations of ESALs and CBR 
values, iterations are performed until 
the given design section was 
duplicated.  In this case, when the 
ESAL value is equal to 0.55 million 
and the CBR value is equal to 3, the 
proposed design section (alternate 2) 
of 8 inches of asphalt and 11 inches 
of aggregate base is obtained.   It 
also included a tensile element grid. 
     Stability of the design flexible 
pavement section is extremely 
sensitive to the selected value of the 
design shear strength or CBR value.  
For design 2, using a CBR- value of 
3 and an ESAL value of 0.55 million, 
yields the section shown as Design 2 
(Figure 68).   As shown in Figure 71, 

the CBR value of an adjacent section is only 
1.4 (85th percentile test value).  Based on 
CBR data (50 samples) stored in the 
Kentucky Geotechnical Database (Hopkins, 
et al, 2004) for Boone County, the 85th 
percentile test value is 2.1 (Figure 72).  
Using the three different CBR values, the 
design thicknesses obtained from the 1981 
flexible design curves, corresponding to 
each value of CBR, are shown in Figure 73.  
Analyses of those three sections using the 
Perturbation Method, and assuming no 
tensile element plastic grids, yield factors of 
safety that are much less than 1.0, 1.01, and 
1.15, respectively—essentially a failure 

condition. 
   Assuming a CBR strength of 3.0 (or an 
undrained shear strength of Su equal to 917 
lbs/ft2) of the soil subgrade and the strengths 
of the tensile element plastic grids equal to 
450, 920, and 1340 lbs/ft, which correspond 
to strains (in percent) of 2, 5, and ultimate, 
respectively, factors of safety obtained were 
equal to 1.18, 1.22, and 1.25, respectively.   
     Assuming the same conditions but using a 
CBR value of the subgrade equal to 2.0 (Su 
equal to 617 lbs/ft2, or psf), the factors of 
safety obtained from the Perturbation 
method are 1.01 (no tensile elements), 1.04, 

Figure 70.  Computer software for using the 1981
Kentucky flexible pavement design curves.  
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Figure 72.  Percentile test value as function of
CBR for an adjacent roadway section. 
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1.08, and 1.10, respectively.  Stability of the subgrade is very sensitive to the strength of the subgrade 
and the choice of the design CBR, or undrained shear strength, is very critical in obtaining a stable 
situation during and after construction.   
     Problems were encountered in a portion of KY 842.  In some instances, aggregate was added to 
certain areas during construction.  Revised sections are depicted in Figure 74 and compared to the 
original design sections.    
 
Coring Techniques and Field Testing Procedures   
 
   Core holes were drilled approximately every tenth of a mile within the study section.  Special 
coring techniques were developed to avoid using water.  Compressed air, instead of water, was used 
to advance the core barrel down to the top of the subgrade of each section.  By using compressed air 
as the drilling media, soaking and softening of the top of the subgrade at each hole was prevented.  
Hence, the subgrade as it exists in its 
natural setting was preserved and 
undisturbed.  
     Typically, three or four holes were 
drilled at each location.  The first core 
hole was drilled to measure the 
thicknesses of the asphalt and aggregate 
base layers of the flexible pavement 
section.  After removing and measuring 
the thickness of the asphalt core, the 
base aggregate was removed by hand to 
expose the top of the stabilized subgrade 
(or in some cases the top of the 
untreated subgrade).  The depth, or 
thickness, of the aggregate base was 
noted.  Then a standard penetration test 
(SPT) was performed on the stabilized 
subgrade to obtain a split spoon 
specimen of the stabilized subgrade.   
     At the same location, a second hole 
was drilled.  After augering through the 
flexible pavement and aggregate base 
and exposing the top of the stabilized 
subgrade, an in situ CBR test was 
performed, as shown in Figure 75.  
After completing the CBR test, a 
moisture content specimen was obtained 
at the top of the stabilized subgrade.    A 
third hole was advanced through the 
asphalt layer and aggregate base and a 
thin-walled, undisturbed sample, or a 
core specimen was obtained of the 
stabilized subgrade.    Latitudes and 
longitudes of each section and borings 
within each section were determined 
using mapping-grade, GPS (Global 
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Figure 73.  Different pavement sections from the 1981
flexible pavement curves (after Southgate et al). 

Boone County, KY 842

11” DGA 

8.0” Asphalt

8.0” Mechanically
Modified Soil Roadbed

Grid

2 Design Alternatives

Fabric

Observed

8.0- 9.0” 
Asphalt

10” DGA 

Grid
2-3”

6” DGA 

6” #2 Stone 
Grid

Fabric

Revised Design

Soil Subgrade

Figure 74.  Revised and observed sections compared to 
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Positioning System) equipment.  
Accuracy of the locations of holes 
was within a submeter of the true 
location.   
 
Bearing Capacity Analyses of 
Selected Sites 
 
Site 1 
Values of in situ CBR, a moisture 
content profile of the upper reaches 
of the soil subgrade, and measured 
thicknesses of asphalt pavement and 
DGA (Dense Graded Aggregate) 
base are shown for Site 1 in Figure 
76.  At site 1, no tensile elements 
were found during drilling.  Using 
the temperature model by Southgate 
(1981), the asphalt layer was divided 
into four layers and equations appearing in Figures 23 and 24 were used to define the shear strength 
parameters, φ , and c, for each layer of the asphalt pavement.  Values of φ  and c, of the DGA base 
were (assumed) 43 degrees and zero, respectively.  The in situ CBR value for this site was 6.4.  Tire 
contact pressure of 80 psi was assumed in the analyses (and subsequent analyses described below).  
A dual wheel arrangement illustrated in Figure 65 was used also.  Using Equation 190, the undrained 
shear of the soil subgrade was 1926 lbs/ft2. The factor of safety against failure obtained from the 
Perturbation Method for this site was 1.90.  No tensile element was found during drilling at this site.  
Pavement problems were not observed at this site.   
 
Site 2 
Conditions found at site 2 are 
displayed in Figure 77.  Moisture 
content of the top few inches of the 
subgrade was larger in value than the 
moisture content of the subgrade 
located below the top portion.  A dry 
shale zone was located in the 
subgrade as shown in Figure 77.  The 
CBR value of the subgrade was 
1.5—an extremely soft subgrade.  
The flexible pavement and DGA 
thicknesses were 8.5 and 12 inches, 
respectively.  Bearing capacity 
analysis of the flexible pavement 
section yielded a factor of safety 
much less than 1.0.  Even using a 
slightly larger value of CBR (equal 
to 2.0) yielded a factor of safety of 
only 0.98.  As noted in Figure 76, 
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Figure 76.  Measured thicknesses of asphalt pavement and
DGA (Dense Graded Aggregate), a moisture content
profile of the top inches of subgrade, and in situ value of
CBR.
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some DGA had to be added during 
construction at this location.  
Pavement problems were very 
visible at this site.  No tensile 
elements were found at this location.  
 
Site 3   
Figure 78 shows the conditions 
encountered at site 3.   The in situ 
CBR was 6.0.  Converting this value 
to undrained shear strength using 
Equation 190, the factor of safety 
against failure obtained from the 
Perturbation bearing capacity model 
was 1.75.  No pavement problems 
were observed at this location.  
Tensile elements were not observed 
during the drilling problem.  
However, a fabric (separator) was 
located at the top of the subgrade.  
Inserting a small strength of 200 
lbs/ft into the analyses increases the 
factor of safety to 1.76.  However, 
analyses of the flexible pavement at 
this location show that the stability 
should be very adequate unless the 
subgrade CBR starts to decrease 
substantially.    
 
Site 4. 
At site 4, Figure 79, a tensile element 
layer was located about 2 inches 
above the bottom of the aggregate 
base. Additionally, a fabric separator 
was located at the bottom of the 
aggregate base to prevent intrusion 
of clay particles into the base.   
Thickness of the flexible pavement 
was about 7 inches.  This thickness 
was slightly less then the thickness 
observed at other locations.  The 
aggregate base measured some 12 
inches.  Value of the in situ CBR of 
the subgrade was 3.9.  Analyses of 
the flexible pavement section at this 
location yielded a factor of safety 
against failure of 1.28.  Using 
published strength values of one 
brand of tensile elements, at 2, 5, and 

12” DGA some added 
during construction
due to rutting?

8.5” Asphalt

CBR = 1.5, 
M.C = 26.12

Boone County  KY 842 Site 2 H-1

-18
-16
-14
-12
-10

-8
-6
-4
-2
0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Moisture Content (%)

Su
bg

ra
de

 D
ep

th
 (i

n.
)

F << 1.0 @ CBR = 1.5

Boone County, KY 842 Site 2

F = 0.98 @ CBR =2.0 

 

Figure 77.  Measured thicknesses of asphalt pavement and
DGA (Dense Graded Aggregate), a moisture content
profile of the top inches of subgrade, and in situ value of
CBR.  
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Figure 78.  Measured thicknesses of asphalt pavement and
DGA (Dense Graded Aggregate) and in situ value of CBR. 
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ultimate strains (in percent), factors 
of safety, denoted F2%, F5%, and Fu, 
of 1.31, 1.35, and 1.38, respectively, 
were obtained from the Perturbation 
model.  Strength values used in the 
analyses were 450, 940, and 1320 
lbs/ft, respectively.  In those 
analyses, no strength was assigned to 
the fabric separator.  Adding a small 
strength of 200 lbs/ft for the fabric 
separator, values of factors of safety 
of 1.32, 1.36, and 1.39, respectively.  
Using published strengths of one 
type of tensile element (690, 1370, 
and 2,050 corresponding to strains--
in percent-- of 2, 5, and ultimate 
strains), factors of safety were 1.34, 
1.39, and 1.45 were obtained.  The 
layer of tensile elements was 
positioned at a location that was 2 
inches above the bottom of the base.  
However, the high-strength tensile 
elements were not used in this case 

and the analyses were shown for comparative purposes only.  Some pavement problems were visible 
at this site.  
 
Site 5 
The In situ value of CBR at Site 5 could not be obtained.  However, a value of moisture content of 
the upper portion of the subgrade was obtained.  
Using the relationship between in situ CBR and 
moisture content measured at other CBR sites, a 
value of 5.4 was estimated (Figure 80).  Based on 
that CBR, the undrained shear strength was 
estimated to be 1631 lb/ft2.     Using the estimated 
value of CBR, the factor of safety (Figure 82) 
was estimated to be 1.58 (without tensile 
elements).  Using values of 450, 920, and 1320 
lbs/ft, which corresponds to strains of 2 percent, 5 
percent, and ultimate strain, factors of safety 
were, respectively, 1.62, 1.66, and 1.70 were 
obtained from the Perturbation Method.  If 
stronger tensile elements had been used, then larger values of factors of safety could have been 
obtained.  For example, if tensile strengths of 690, 1,370, and 2,050 lbs/ft, corresponding to 
mobilized strains of 2 percent, 5 percent, and ultimate strain and ultimate, respectively, ad been used, 
then factors of safety of 1.62, 1.66, and 1.70, respectively, would be obtained from the Perturbation 
Method.   
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Site 6     
Conditions encountered at Site 6 are shown 
in figure 82.  The in situ value of CBR was 
5.4, or an undrained shear strength of 1631 
lbs/ft2.  An estimated factor of safety without 
tensile elements was 1.58.  Using values of 
450, 920, and 1320 lbs/ft, which corresponds 
to strains of 2 percent, 5 percent, and 
ultimate strain, factors of safety were, 
respectively, 1.62, 1.66, and 1.70 were 
obtained from the Perturbation method.  No 
serious problems were observed at this site at 
the time of the study.  
     In Figure 83, the relationship between 
factor of safety and in situ CBR is shown for this roadway.  As the CBR drops below a value of 
about 2.2, the factor of safety decreases to a value of 1.0, or less—a failure condition.  To maintain 
adequate stability, the CBR needs to be equal to about 5, or a safety factor equal to, or greater than 
about 1.5.      

 
 

SUMMARY AND CONCLUSIONS 
 

     Mathematical bearing capacity models proposed and developed by Hopkins in 1991 and Slepak 
and Hopkins in 1993 were extended to analyzing flexible pavements reinforced with tensile elements 
embedded in earthen structures.  Major portions These advanced models, which are based on limit 
equilibrium and are operated together, can be used to analyze the bearing capacity, or stability, of 
early construction of loads on a single layer of material, two-layered problems involving a layer of 
base aggregate and subgrade, and a foundation involving multiple layers of different materials, such 

10” DGA 

8.0” Asphalt

M.C = 17.92  (No CBR)

Fabric
Geogrid

8”

2”

Boone County, KY 842 Site 5

2%

5%

1.58 ( )

1.62
1.66

1.70u

F without tensile element

F
F
F

=

=
=

=

Figure 81.  Measured thicknesses of asphalt
pavement and DGA (Dense Graded
Aggregate), a moisture content profile of the
top inches of subgrade, and in situ value of
CBR.  

0.8
1

1.2
1.4
1.6
1.8

2

0 2 4 6 8
CBR

Fa
ct

or
 o

f 
Sa

fe
ty

F = 0.7358e(0.1366CBR)

Figure 83.  Factor of Safety as a function of in situ
CBR, KY Route 842, Boone County. 

10” DGA 

8.0” Asphalt

CBR = 5.4, M.C = 13.95 

Fabric

Geogrid
7”

3”
Boone County  KY 842 Site 6

-24

-20

-16

-12

-8

-4

0

12 14 16 18 20 22

Moisture Content (%)

Su
bg

ra
de

 D
ep

th
 (i

n.
)

Boone County, KY 842 Site 6

2

5

1 58
1 62
1 66

1 70

%

%

u

F . ( without tensile element )
F .
F .
F .

=
=
=

=

 

Figure 82.  Measured thicknesses of asphalt
pavement and DGA (Dense Graded
Aggregate), a moisture content profile of the
top inches of subgrade, and in situ value of
CBR. 



T Hopkins, L Sun, and M Slepak--- University of Kentucky Transportation Center, College of Engineering 
 

 

112

 

as a flexible asphalt pavement. A -type shear surface is used in the model analyses of layered 
foundations.  The approach developed by Slepak and Hopkins, referred to as the Perturbation 
Method, is recommended when reinforcement is used.  Either the Perturbation method, or the 
Hopkins method, may be used in stability problems that do not involve reinforcement, or tensile 
elements.  The Perturbation method can be used to analyze all classes of stability problems involving 
circular or noncircular shear surfaces.  Both effective and total stress analyses may be performed.  
Effective stress analyses may be performed in the stability analyses of flexible pavements if pore 
water pressures are known (or estimated) using the Perturbation Method. 
     Although the current model does not account for strain compatibility, the strength of the tensile 
elements may be input for assumed strain levels. Pullout resistance forces are computed for both 
active and passive zones.  Those forces are compared to the strength entered by the user and the 
smaller value is used in the analyses.  Any number of tensile elements may be analyzed in a given 
problem.  In the limit equilibrium approach, shear strengths, the angle of internal friction, N, and 
cohesion, c, are entered for each layer of material.  Triaxial testing of the asphalt material is 
performed in a manner that the shear strength parameters, N and c, are developed as a function of 
temperature.  Hence, if the temperature of the asphalt layer is known (or assumed) at a site, then 
values of N, and, c, may be calculated from the relationships between the shear strength parameters 
and temperature.  Moreover, to facilitate and provide an efficient means of analyzing early 
construction cases and flexible pavements reinforced with geosynthetics, “Windows” software was 
developed.  The report includes a “user guide” for operating the computer software.  Since N and c 
vary with depth of asphalt and temperature in the case of the asphalt layer, the entire asphalt layer is 
divided into finite layers.  When the surface temperature of the asphalt is known (or assumed), a 
temperature distribution model is used to estimate the temperature at any depth below the asphalt 
layer surface.  Consequently, the shear strength parameters are known at any depth (of each finite 
layer) below the surface.   
     To establish the validity and reasonableness of the newly developed limit equilibrium models, 
bearing capacity factors are derived from the limit equilibrium methods and compared to classical 
bearing capacity factors, Nc and Nq, developed by and Reissner in 1921.  Differences range from 1 to 
10 and 1 to 3 percent, respectively.  The Slepak-Hopkins model yield values of N( that are 12 to 38 
larger than values published by Caquot and Kerisel.  However, values of N( from the Slepak-
Hopkins model are only 3 to 11 percent larger than back-calculated values obtained by Debeer and 
Ladanyi from experimental footing tests. The Slepak-Hopkins model was also used to analyze 237 
flexible pavement sections of the 1959-1960 AASHO Road Test.  Factors of safety from the model 
analyses showed that very reasonable results were obtained and were in line with failures recorded at 
the test site.  Factors of safety of pavement sections that in the Road Test that survived the 2-year 
testing program ( ≥ 8 million equivalent single axle loads –ESAL) generally exceeded 1.5.     
     Finally, actual analyses of a stretch of roadway where failures occurred were analyzed.  Three 
sites included sections involving tensile elements.  At three locations where tensile elements were 
used, and assuming tensile element mobilized strains of 2 percent, 5 percent, and ultimate strain, the 
factor of safety increased some 2-5 percent, 2. –5 percent, and 6 to 12 percent, as shown by 
Perturbation analyses.  Fabrics with larger strengths than those used at this site could produce larger 
factors of safety.               
 

 
RECOMMENDATIONS AND IMPLEMENTATION 

        
     To advance the use and implementation of limit equilibrium bearing capacity models described 
herein, the following recommendations are proposed: 
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•    The Perturbation Method proposed herein is recommended for general use in all classes 

of stability problems.  In particular, the method is suitable for analyzing bearing capacity 
problems involving early pavement construction situations involving base aggregates 
reinforced with tensile elements.  The approach, however, is suitable for analyzing 
completed flexible pavements reinforced with tensile elements.  The method is also 
suitable for analyzing those situations where tensile elements are not used. 

 
•    To further validate the model, additional field research studies need to be made that 

involve flexible pavements reinforced with tensile elements.  Additional flexible 
pavement sites, however, where obvious pavement failures have occurred, need to be 
analyzed that do not involve tensile elements.  In cases involving failures, the 
Perturbation model should show low factors of safety.  The examples described herein 
appear to indicate that low factors of safety were obtained in areas where the flexible 
pavement showed distress.   

 
•    As deformation occurs under wheel loadings—bearing capacity problems--the strains of 

pavement layers and the strains of geofabrics are not necessarily the same, that is, there is 
incompatibility of strains.  To mobilize the strength of the geofabric, sufficient strains 
must occur in the geofabric—and the pavement layers.  Although the forces should be 
derived from the principle of strain compatibility, in this study, a simple assumption with 
respect to reinforcement forces was made, that is, the external forces of the geofabric act 
horizontal.  Development of a strain compatibility model was much beyond the scope of 
this study and a new research proposal should be considered in the future to develop a 
model.  The assumption made in the Perturbation Model still allows the user to determine 
the factor of safety against failure if it assumed that a certain percentage of strain is 
mobilized in the geofabrics.     

      
•    To fully implement the Perturbation computer software it is recommended that a one- or 

two-day workshop be developed and taught to interested parties.  The workshop should 
be geared toward teaching and explaining, in detail, the necessary parameters for 
performing bearing capacity analysis.  This workshop would be developed for practicing 
geotechnical engineers.     

 
•    For practicing engineers who are not versed in geotechnical engineering and are mainly 

interested in performing bearing capacity analyses of early construction and completed 
flexible pavements cases involving tensile element forces, it recommended that 
simplified data entry screens be devised.  In this case, the workshop could be shortened to 
one half-or one-day. 
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